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NOMENCLATURE 

bulk sound speed of gss 

cross sectional ere« of the bullet 

cross-sectional ere« of duct 

constent preesure specific heet of the gee 

constant volume specific heet of the gas 

barrel diameter 

chamber diameter 

Internal energy of gas per unit mass of gas 

internal energy of combustion products per unit mass of gas 

Intei .jal energy of particle per unit mass of particle 

Internal energy of gee per unit mass of gas leaving 
through the wall 

Internal energy of particle unit mass of particle 
leaving through the wall 

force per unit volume of mixture resulting from gas 
acting on particle (positive when acting In positive 
x direction) 

bore resistance force 

vail friction force on gas per unit volume of 
mixture (positive when «cting in positive x 
direction) 

well friction force on particle per unit volume of 
mixture (positive when acting In positive x 
direction) 

enthalpy of gas 

particle's velocity ratio acrosi area discontinuity 

amount of heat released per unit volume of 
propellent burnt 

bullet length 

barrel length (measured from where berrel diameter 
begins to muzzle) 

length of cylindrical portion of pertlde 

mass of the bullet 

mass of a single particle 

number of particles per unit volume of mixture 

mnber pf particles per unit mass of gas 
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praaaur« of gas  (alao aqual co praaaura of mlxtura) 

peaaaura laMdlately aftar   tha bullat 

praaaura Immtdiataly bahlnd tha bullat 

praaaura bahlnd tha bullat ionadlataly bafora It 
laavaa tha barral 

oondlmanslonallzlng praaaura 

praaaura bahlnd shock whan It laavaa tha barral 

hold back praaaura 

■uszla praaaura (usually atmospheric prassura) 

praaaura of tha gas leaving through well perforations 

tine rate of heat addition to gaa par unit nass 
of gaa from Internal aourcaa 

time rate of heat addition to partlclea par unit 
la of particle from Internal aourcaa 

time rate of heat addition, to gaa par unit mass of 
gaa from duct wall 

time rate of heat addition to partlclea par unit 
maaa of particle from duct vail 

rata at which total energy ia added to the gaa par unit 
volume of mixture due to burning 

rata at which total energy ia added to the particle pheae 
par unit volume of mixture due to burning 

total heat releeaed by a propellent particle 
from ignition to time t. 

rata at which total energy ia added to the gaa pheae per 
unit volume of mixture due to mess tranaf er through well perforations 

rata at which total energy la added to the particle pheae per 
unit volume of mixture due to mass tranafer through wall perforations 

particle radius 

entropy of gaa 

burning aurfaca 

time 
timii that it takes for pBEX to reach p« after bullat leevea 
tha barral 

time that bullet leevea tha barral 
time that it takes for pmrp-to reach pn after ahock laavaa 
tha barral 

tempereture of gaa 

wall tempereture 

velocity of gaa 

velocity of particle 
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Z 
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vsiodty of gas leaving through tha wall In the x direction 

velocity of particle leaving through the wall In the x direction 

ahoek velocity 

velocity of gas leaving through tha wall in the radial 
direction 

velocity of particle leaving through tha wall In the radial 
direction 

vol 

vol 

of a propellent particle burnt from Ignition to tine t 

of a propellent particle raoainlng at tine t 

position coordinate along axis of duct (positive from 
breech to nuzzle) 

x location where barrel diameter begins 

x location of bullet 

x location where chamber diameter ends 

nondlmanslonallzlng length 

x location of muzzle 

regression distance 

constant In regression formula 

constant In regression formula 

ratio of specific heat C /C p v 

volume fraction of particle 

dynamic viscosity 

density of gas • mass of gaa per unit volume of gas 

nondlmanslonallzlng density 

density of particles - mass of particles per unit 
volume of part Idee 
denelty of gaa leaving through the wall 

gas concentration (mass of gas per unit volume of mixture) 

particle concentration (mass of partldea per unit volv 
of mixture) 
the rate et which work la done on the gee per unit mass 
of gea from all forcea 



I. INTRODUCTION 

This document Is a final contract report for contract DAAD05- 
74-C-0749.    The research tinder this contract is aimed toward the 
development of a computer code which utilizes the method of charac- 
teristics to solve the problem of two-phase flow with shocks.    This 
type of flow is typical of flow in a projectile launch tube, where 
combustion products and unburnt propellent grains are mixed. 
Usually,   this complicated flow, which may contain shocks of relatively 
large amplitude, is approximated either by a pure gas flow or by a 
simplified two-phase flow model where the gas and particles have the 
same or predetermined relative velocities.    A better model to handle 
this problem is required to test the accuracy of simplified formu- 
lations and to produce a more accurate prediction of the flow, 
particularly in the presence of shocks. 

In addition to presenting the general formulation,   a dis- 
cussion  of the proper initial-boundary values to be prescribed for 
the present mixed hyperbolic-parabolic equations is presented.     It 
is shown that there is a region immediately behind the bullet in 
which only the gas phase is present.    This consideration requires 
the development of an interface between a one-phase and two-phase 
region.    The computer code IWOFLO which utilizes the method of charac- 
teristics and finite difference techniques to solve the problem of a 
projectile accelerating in a gun barrel is presented. 

- •    •   ■(-' 
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1. State of the Art 

Quite a few textbooks and manual«,  such as,  Corner [1], Hunt  [2] 
and the Amy Design Handbook [3] exist In the field of Internal 
ballistics;  however, most of these works give only qualitative de- 
scriptions,  or present simple experimental results.    They sre not 
sufficient for modern design application; more uo-to-date computer 
codes are needed  to better model the Internal ballistics problem. 

In recent years, computer codes have been developed to treat 
the Internal ballistics problem.    Examples of which are codes written 
by Beer and Frankle [4] and Baer [5].    These codes for the most part 
are limited In that they are restricted to one-phase flows where the 
particle motion Is predetermined.    This Is sstlsfactory when the 
particles are very small,  and the loading ratio Is low,  thus the 
particles and the gas are In equilibrium.    However,  for problems where 
finite size propellent particles sre packed with a high loading ratio, 
the motion of the particles is different from that of the gas and the 
flow should be treated as two distinct phases.     In 1956, under BRL 
sponsorship, a group at the University of Maryland discussed the 
equations of two-phase flow and proposed schemes for numerical calcu- 
lation; however no attempt was made to writ« a code [6].    Other works 
such as Refe.   [7] and [8] are only for special applications, with 
various limitations and simplifications. 

There is a need for an up-to-date two-phase flow code that will 
trace shock waves exactly, handle high loading ratios,  include the 
effects of finite particle volume, accommodate a general form of the 
equation of state and various other features.    With today's high speed 
computers and the knowledge of numerictl methods,  it is feesible to 
develop such a code. 

To solve this problem numerically either a two-dim«' islonal or a 
one-dimensional code may be developed.    As discussed by Horetti [9] 
two-dimensional codes are certainly more versatile; however, for 
certain problems,  the results of two-dimensional codes are often less 
than satisfactory, with uncertainties in convergence, stability and 
physical meaning.    On the other hand, one-dimensional codes can be 
used more conveniently for studying the importance of different para- 
meters and for delineating the physical nature of the problem.    In view 
of the present state-of-the-art in two-phase flow, a one dimensional code 
would be most useful to solve interior ballistic problems. 

In this report, we present s one-dimensional two-phase flow 
code, in which a shock wave is traced exactly both in front of and 
behind the projectile.    In continuous regions, we shall use the basic 
method of characteristics supplemented by finite-difference techniques 
in places where ciaracteristlcs do not exist.    The method of character- 
istics has the advantage that it reveals more directly the flow prop- 
erties and wave ctructure. 
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b. 
c. 

d. 
e. 

2.  G«n«r>l Faature« ot the Cod« 

The following are some ot the features that are Included In the 
final code. 

a.      The computer code Is written In sucn a way that any consistent 
set of units can be used, 
ihe code la written in FORTRAN IV language. 
Pruvisions nave oeen made to account for neat loss through tne 
barrel, wall friction, and mass loss through holes in the 
barrel. 
The code is designed to handle gradual changes in bore area. 
Tie code does not handle ignition;  therefore, all propellent 
particles will be assumed to be ignited before calculations 
begin.    An ignition code must be used to generate the initial 
conditions p(x,0),  e(x,0).  p(x,0),  p   (x,0), z(x,0),  u(x,0) 

and u^(x,0) which will be substituted into the present code. 
A shock wave may be present initially. 

f. The bore resistance is treated as a function of x, u and Ap. 
g. The gas in front of the bullet is treated including the 

possible formation of a shock. 
h.      A single shock wave can automatically be inserted and traced 

behind the projectile. 
1.      The barrel configuration is of the form shown in Fig.   (1). 

Breech 
Variable Bore 

Area 
Projectile    Muzzle 

zaggazaj^ y///////^///A\ 

-•»• 

Figure 1 - Schematic Barrel Configuration 



II. GENERAL FORMULATION 

1.      Llf Mtuf R«view 
The problem of tvo-pheee flow hee drawn considerable attention In 

recent yeara.    Thla Interest la stimulated mostly by applications 
such aa solid propellent rockets, nuclear reactors,  fuel sprays, 
lunar aah flow and, of courae, Interior ballistics.    The governing 
equations of two-phase flow have been preaented by many authors.    A 
few of these will be discussed here. 

Rudlnger [10, Section 4] derived a set of equatlona for solid parti- 
cles suspended In a gaa where the particle volume fraction la finite. 
A simpler set of equations neglecting the particle volume was also 
presented [10, Section 7].    This simple aet of equations was solved 
numerically for an unsteady flow problem [11].    Rudlnger gave detailed 
phyalcal meaning to various terms In his equatlona and discussed the 
shock conditions and relaxation times.    Hie formulation la not suitable 
for direct application to the present problem, beceuae (a) It Is limited 
to an Ideal gaa equation of atate, (b) no mass tranafer between the 
particle and the gas is conaldered,  (c) no tranaport of mass, momentum, 
and energy between the mixture and the duct wall la allowed, (d) no 
provision la made for a change of duct area along the axle, and (e) 
the preaaure gradient force on the particle is neglected. 

Migdal and Agosta [12] derived two-phaae flow equatlona by conalder- 
ing the particle terms as a source of drag and heat tranafer In a 
pure gas flow.    Ihey Included the effects of maaa, momentum and energy 
transport between the particles and the gaa, without giving explicit 
expressions for them and limited their study to the caae of small 
particle volume.    Using concepts In continuum mechanics, auch aa par- 
tial stress and partial energy, Soo [13] derived equatlona for multi- 
phaae flow.    He emphasized the importence of the alze distribution of 
the solid particles, and wrote a aet of fundamental equatlona treat- 
ing solid particles of different sizes aa distinct species In the 
mixture.    Thla approach la not directly aultable for practical appli- 
cation beceuae in general the size distribution of the solid particles 
is more or leaa continuous.    Panton [14] treated the two-phaae flow 
problem by defining all phyalcal quantitiea in terms of their time 
and special averagee.    Thla approach may be eultable for a turbulent 
flow study, but is too cumbersome for other purpoaee.    Murray [15] de- 
rived a aet of equatlona to be uued primarily for fluldlzatlon appli- 
cations.    He aaaumed a conetent particle volume ratio and neglected 
preeeure forcee acting on the particlea.    In each of hie equations of 
motion tanai involving the time derivative of both the fluid and 
particle velocities are incl-jded.    Aa will be shown later,  these terms 
will change the nature of the governing equatlona.    Marble [16] also 
applied modern techniquea yf fluid mechanics to the two-phaae flow 
problem of a gaa and solid particlea, however, he limited his study 
to the ceae of a negligibly email particle volume fraction. 



Most studies of a two-phase flow are limited to the case of a 
negligibly small particle volume fraction. As mentioned before, 
Rudlnger [10] Included the volume fraction terms, but did not consider 
the pressure gradient force acting on the particle. Pal [17] Included 
the particle volume fraction term and also the pressure gradient force. 
He treated this pressure force by considering the particles as a pseudo- 
fluid with a partial pressure. This pseudo-fluid, however, does not 
contribute to the pressure of the mixture.  In doing this, the term 
containing the special derivative of the particle volume fraction , l£. , 

was not Included.  For problems where e Is not negligible the de- 
rivative may be of the same order as other terms In the equations and 
its omission may cause appreciable error. 

In this report, we derive the governing equations Including the 
pressure gradient force on the particles, and also the l£ term. It will 

3x 
be shown that the Inclusion of this term causes the characteristic prop- 
erties of the equations to change. When this term Is neglected, two 
compatibility equations exist along the triple degenerate characteristic, 

-nr " up, while when It Is Included, only one exists (for further details 

see Sec. 111,1) 

2.       Basic Assumptions 

The governing equatlonb are derived on the basis of the following 
assumptions: 
a. The equation of state of the gas Is of the form p-p (p,E) or 

p-p  (p,T). 

b. The average size of the actual particles will be used In the 
equations;   they are Incompressible;   their specific heat Is 
constant, and the temperature Is uniform within each particle. 

c. The particles are uniformly distributed over the cross-section 
of the duct, and their size and average spacing are small com- 
pared with the cross-sectional area. 

d. The flow Is treated as one-dimensional,  thus changes In the 
cross-sectional area of the duct must be sufficiently gradual. 
Abrupt changes In the cross-sectional area must be treated by 
matching the continuous flow regions on both sides. 

e. The drag force between the gas and particle phases is assumed known. 
It may be prescribed as a function of any of the flow variables. 
The modified Stokes  formula and Ingebo formula, which were used 
by Pal and Rudlnger, are typical drag force expressions. 

f. The effect of the particles on the gas flow Is distributed over 
the entire gas phase by mixing.    This mixing Involves only a 
small gas volume and is therefore assumed to take place 
ins tantaneo us ly. 

i   « 



h. 

1. 

J. 

The »if of  the partlclM to be coneldcred will be a few orders 
of magnitude larger than the noleculee of the gae. It will be 
assumed, therefore, that the particles do not contribute to the 
pressure of the mixture. The pressurs of the gas-particle 
mixture is given by the pressure in the gas phase alone. The 
volume fraction of the particles, e, will not be assumed small. 
Therefore, the pressure gradient will act on the particles, as 
well as on the gas, and will be Included in the momentum equa- 
tions of the particles. 

Gravitation and other body forces will not be included in the 
equations. 

The density ratio between the particles and the gas is small 
enough so that terms containing p/p may be dropped from the 
equations. " 

The particle density p is constant. 

3. GoveminE Equations 

Under these assumptions, the governing equations for the 
gas medium are (for a detailed derivation see Appendix A) the continuity 
equation, 

Do .   3u    au dA . _— + a — • —— _—+(„_ u 
Dt    dx    A dx      w 

(1) 

the momentum equation, 

w w 
(2) 

and the energy equation 

JE     £ iu . £u |e . 1 [ +    (F - ) . Fu   . „(uu   - i u2 + E) 
Dt      p 3x      a   3x     a  lx ^w        ^     w p P      2 

/ 1    2  .  _. p       pu(l-c) 3A , ,-v 
♦ Uw(uuw - 2 u    + « - % ^ " "-^ fS 1 <3> 

The governing equations for the particles are the continuity equation 

Dpa 9u 
 *•+ o —« 
Dt    p 3x 

the momentum equation, 

DPu 

p p dA 
•- « « •^— — (i) — ii) 

A  dx      wp 

Dt 
7" ^ t(f-fw) " ü.(up-u) + a.w(uw-u)l 

+ (P+ P ) - «„„(u -u )) 
wp    wp wp p 

and the energy equation, which is uncoupled from the system, 

DPEM  _ 3u   pu 8    * 

Dt pp 3x 0- 3x 
P 

P + ^wp 

.2 ep u 3A 
+
 

UI.PWP +
 

(E
P 

+
 -2 

)(w+wwp>--ir3i1 
P wp 

(4) 

(5) 

(6) 
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D a a 
m + ii 

Dt at 3x 

DP ? a 
Dt 

m 

at + 
"P dx 

where D/Dt and DP/Dt are material derivatives of the gas and 
particle properties, respectively, and are given by 

and 

Equations  (l)-( 6)  represent a system of 6 equations in terms of 
8 unknowns o,   u,  E,  p,  o   ,   u ,  E    and e.     To complete this system 

we must supply the equation of state of  the gas 

P - P  (P.E) ( 7) 

and the definitions of a and o 
P 

and 
a  - (l-e)p (8) 

op - e pp ( 9 ) 

With the assumption that pp  is constant  (the particle is incom- 
pressible),    Eqs.   (l)-(9)     represent a system of 9 equations in 
terras of 9 unknowns o,  u,  E,  p, p,  e. Op,  Up, and Ep.     The terms 
^  V  "wp*  ^  V   ^'wp*  ^  V  V  and ^wp aPPearln8 on  the ri8ht 

hand side of Eqs.   (1)   to  (9) will be considered as given input infor- 
mation;   they may be either functions of x and t,  or functions of the 
flow properties.    Usually,   they do not contain derivatives of the flow 
properties with respect to x or t;   therefore they will not affect the 
characteristic directions and the form of compatibility equations 
associated with the system. 



4. Initial and Boundary Condition« 

When attempting to determine a aet of properly poacd initial and 
boundary conditions for a aet of equations, it ia beneficial to have 
a thorough understanding of their characteristic directiona and com- 
patibility equations, since the two are closely related. The details 
concerning the characteristics associated with Eqs. (l)-( 5} can be 
found In Sec. (111,1); however, a few pertinent observations will be 
presented here. 

First, the particle phase equations, Eqs. (4 ) and (5), arc weakly 
coupled to the gas phase equatlona, Eqa. (1J, (2) and (3) (note that 
the converse Is not true), thus the characteristic directions associated 
with each phase can be calculated separately. Second, the compatibility 
equations associated with Eqs. (4) and (5) can be calculated inde- 
pendent of Eqs. (1), (2) and (3), however, again, the converse is not 
true.  The full set of equations, Eqs. (lW 5 ) nuat be used to calcu- 
late the compatibility equations for the gas phase. 

With this information and the understanding that boundary con- 
ditions are strongly dependent on the characterlatic equations, wc shall 
make the assumption, that in determining the proper boundary conditions 
for our problem, we may treat the three gas equations and the two 
particle equations separately. The gas equations are then treated as 
completely hyperbolic, and possess the same boundary conditions as 
one-phase compressible flow. The one phase equations Incorporating an 
Ideal gas assumption will now be presented briefly.  They are 

9p   .       9p   .        3u      n 

ät+U3f+P   37-0 

lH+uift + l|£. o 
3t   3x  p ax 

J. /-L (:£) + 9t  PY 

0 / u air( 
PY ) 

where 
p 2Y/(Y-1) 

po  co 
The characteristic directions and their corresponding compatibility 
equations for this system are then 

along ^ 

along is 
dt 

dx 

u, 

u + c, 

and along "TT " u - c, 

d( -2- ) - 0 
PY 

du + -S-dp - 0 
YP y 

du - -^p 
YP 

For hyperbolic systems a properly posed set of initial and boundary 
conditions Is relatively easy to determine. Courant and Friedriche [18] 
discussed this problem in detail while Introducing the concept of 
"space-like" and "time-like" curvea.  Essentially, they simply state 



that for each characteristic reaching a point on a boundary from outside 
the domain, one dependent variable must be specified.  As an example, let 
us take a typical boundary where the boundary coincides with a particle 
path, dx/dt - u.  If this is a right boundary, the characteristic dx/dt ■ u-c 
falls outside the region of Interest, while if It is a left boundary the 
characteristic dx/dt ■ u+c falls outside.  In either case one dependent 
variable must be specified on each boundary. 

In determining the proper initial conditions, we treat the initial time 
line as a boundary defined by t-0. For this case all three characteristics 
fall outside the uomain and thus all three dependent variables, p, p and u 
must be specified. 

For the problem presented in this report, we specify three gas proper- 
ties on the initial time line and one gas property on each boundary as can 
be seen in the summary at the end of this section. 

The determination of proper boundary conditions for the particle 
equations can not easily be placed on a rigorous foundation since they are 
parabolic in nature.  It is felt, therefore, that insight into this problem 
could be gained by studying a few classical parabolic systems where proper 
boundary conditions have been established.  Based on observation of these 
cases, we shall propose a hypothesis on boundary conditions, and apply it 
to our parabolic particle equations. 

Boundary Condition Hypothesis 

For two first order partial differential equations in terms of two 
dependent variables u and v, and two Independent variables £ and n, 

1. If dn - 0 is a degenerate characteristic, then there can be only one 
boundary at n ■ constant, along which either u or v may be prescribed. 
No boundary conditions need be prescribed on any other n • constant line. 

2. If one of the Independent variables Is time t, then only one boundary 
with t - constant can exist, and further, 

a. If t • constant is a degenerated characteristic, either 
u or v may be specified; 

b. If t - constant is not a characteristic, both u and v 
must be specified, which is a typical Cauchy initial 
value problem. 

Consider the system of equations 

3v 

3u 

■ a 
3u 
3n 

+ •• 

(10) 

  



which Is equivalent to one second order equation 

3u A 
■ a 

H 3n 
+ ••• 

when the omitted terns do not contain any derivatives. For our present 
purpoie, we shall use the first order system, Instead of the single second 
order equation. It can be shown that for (10), dn a 0 Is a characteristic 
line. According to our hypothesis, the boundary of the domain must be 
"open" In the positive n direction.   Boundary condition can be specified 
along only one n ■ constant line ([19], p. 692).  If £ Is not the time 
coordinate, then two boundaries exist along two £ ■ constant lines 

A typical problem of this nature is the heat transfer problem governed 
by the equation 

32T 

3X2 

2 9T 
1 3t 

or the equivalent first order system 

1£ 
3x 

2  3T 
3t 

a 

3x 

where T is temperature and a is a constant, 
associated with this equation is 

The characteristic direction 

dt 

A properly posed set of initial and boundary conditions for this problem, 
as shown in Fig. 2, is 

t - 0 
x - 0 
x - L 

specify T 
specify T 
specify T 

where L is the thickness of the plate. 

**t.€*****4*44**4   44*44    4 

I/" 
constant, a characteristic 

T Specified on All Three Boundaries 

Figure 2 Boundary Conditions for the Heat Transfer Problem 
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Another example Is the boundary layer equations.  If only the terms 
relevent to our present discussion are Included, the governing equation 
may be written as 

»2 2 
8 u 

a»2 
1   3u j 
v   3x 

ulval ent first onter 

3G 

3y 
1   3u . 

- — u r— + ••• 
v   3x 

3u 

ay 
- G 

where x Is In the direction of flow and lies In the plane of the plate, y 
Is normal to the plane of the plate, u Is the velocity In the x direction 
and v Is the kinematic viscosity. The characteristic direction for this 
system Is 

dx - 0 

A properly posed set of boundary conditions for this problem as 
shown In Fig. 3 Is 

y ■ 0 specify u 
y « oo specify u 
x - x0 specify u (x0,y) 

.   f-u - free stream velocity 

u - u(y)-/ - 

Characteristic direction 

Boundary 
Layer 

"> * » » v j * r  r * T 

Plate 

\**p*r**jr* ' X 

^u 

Figure 3 Boundary Conditions for Boundary Layer Flow 

In both of these examples, £ Is not the time coordinate.  In our 
particle phase case, the equations may be represented by 
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-r- 

3u 

DPu 

Dt 

where the Independent variable equivalent of € of Eq. (10) la time. 
Therefore, only one 4 ■ constant boundary exists, as shown In Fig. 4. 

u or o 
P    P 

specified' 

f. Boundary does not exist (2nd t - constant line) 

Boundary does not exist 
(x - constant Is a 
characteristic) 

^ *" x 

o and u specified 
P     P 
(t - constant Is not a characteristic) 

Figure 4 Boundary Conditions for the Particle Phase of Our Flow 

In the actual problem, the right hand side of the domain la bounded by 
a gas-particle Interface, see Fig. 5. No boundary conditions need be 
specified on this boundary for the particles, the solution of the gas equations 
and the particle equations will yield the location of this Interface line. 

characteristic * 
curve 
dx 
dt ' 

£- u - 0 
dt   p 

characteristic 
curve dx/dt - u 

Two phase region 

curve 

Bullet 

characteristic 
dx 

■  " "'B 

^0 
*■  x 

Figure 5 Physical Plane Description of TVo Phase Flow Behind a Projectile 
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In sunanary, the boundary conditions for our problem are Breech (x*0) 
u(0,t) • 0 

UpCO.t) - 0 

Left Bullet surface (x - x_) and (x < XjJ 

"B " dt 

duB    1 
dt   ^ IFR'(PBEF"PAFT)AB] 

u(xB,t) - Up 

Right Bullet surface (x - x^ + L ) 

uCxg + LB,t) - uCXg.t) 

Muzzle - after bullet has left (x ■ O 

P^'0 - PßEX + (PM-p»EX)<t-tIX>/tBD 

when luCXj^.t) < cCxj^.t)] 

or 

uCXj^.t) - cCxjj.t) 

Muzzle - before bullet has left (x - XjJ 

pCXj^.t) - pM   when [u(xM,t) < c(xM,t)] 

or 

uCxjj.t) - cCxjj.t) 
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Muztle - after ghock has l«ft (»"O 

?M'PEXIT 

whan [ud^.t) < cd^.t)] 

^V0 " PEXIT* cVmT)(t-tmT)/tiD 

or 

uCxjj.t) - cC^.t) 

Initial time line (t-0) 

u(xf0)    • •   ^(x) 

p(x,0)    • • t2i*) 
p<x>0)    • •   f3(x) 

c(s»0)    • •    f4(x) 

Up(x,0)    « •    f5(x) 

PD(X,0)    ■ ■   conatant 

I 

u 



5.  Shock Waves 

The treatment of shock waves presented here Is based on the 
hypothesis that when a shock wave passes through a particle-laden gas, 
the changes occur at such a rapid rate that Immediately behind the 
wave the particles have not had sufficient time to react. The shock 
wave produces a rapid deceleration of the gas accompanied by a nearly 
discontinuous rise In pressure.  Therefore, as presented by Krlebel [21] 
and Rudinger [10], the initial disturbance caused by the shock wave 
is not influenced by the presence of particles in the gas. All 
properties behind the shock can be calculated from the shock conditions 
If the gas properties in front of the wave are known along with the 
shock speed or one gas property behind the wave.  This state immed- 
iately behind the wave is known as the "frozen" state. 

The equations used to calculate the gas properties In the frozen 
state are the standard Ranklne-Hugoniot shock relations 

(11) 

(12) 

P1 (U-u^ 

P2-P1 

P2 (U-u2) 

Pl (u"'u1)(
u2~ui^ 

E2-E1 2 (P2-pi) (^7" ^7 (13) 

where subscripts 1 and 2 represent properties in front of and behind 
the shock, respectively, and U is the shock speed. As previously 
mentioned, the properties of the particles are identical in front of 
and behind the wave. 

6.  Equation of State 

In formulating the governing equations, it was only natural to 
assume that the equation of state was a function of the specific 
internal energy, E, and the density, p or 

P - p(P,E) (14) 

However, In the practical application of flow in a gun barrel,   the 
equation of state will more than likely be given in the form 

p - p'   (P,T) (15) 
therefore,  provision must be made to incorporate this form into our 
formulation.    In this section we will treat the subject in detail 
and present specific examples. 

From the mathematical standpoint.  If we can arrive at a re- 
lation between E, T, and p of the form 

f(E,T,p) - 0 (16) 

then Eqs. (15) and (16) will combine to be equivalent to Eq. (14). 
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The procedure used to generate Eq. dfi) involves the solution of 
several partial differential equations from classical thermodynamics 
[2 2], In order to solve these equations two conditions must be speci- 
fied. First, CV(PQ,T) must be given, which for this problem it is 
assumed to be of the form 

CV(P0,T) - A1 + A2 T 

Secondly,   the constant ECPQ.TQ) must be given.    Knowing these two 
conditions, we can proceed to determine Eq.   (16). 

We begin by calculating the constant volume specific heat of 
the gas by solving the equation 

3C  \ 
3p 

-AT 2 p 3T 
2 

Then, we calculate E(p,T) and subsequently Eq. (16) from the relations 

3T   v 

and 

3p    p2 
V1 3T P') 

and the condition E(p0,T). 

Determining Eq. (16) only conceptually solves the problem of 
handling an equation of state in the form of Eq. (15)« At this point 
we will treat the actual technique for implementing Eqs. (is) and (is) 
into the computer code. 

When the value of p must be calculated, assuming that p and E 
are known, Eq. (16) is solved numerically for T and then T and p are 
substituted into Eq. (15) to yield p. When the derivatives |P and |P 

are required, they are calculated from Eqs. (15) and (i6N through the 
following formulas 

IE. it' 
3E      31 

3T(PlEl 
dE 

^.lE' 
3p      3T 

3T(plLEl+ 3E' 
3p                  3p 

i 

3T    3T 
Where the value of — and — are found from Eq. 

dE     dp 
(16) using the relations 

and 

Urn 
3E * 

3T . 
3p 

3_f   ,   3f 
3E '   31 

3p   '   31 
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We will now present two equations of state which have been 
Implemented Into the computer code. The first is the "vlrial equation" 
given by 

p - p £ T (1 + p B(T) + p2 C(T)] 

and the second is the van der Waals equation given by 

p ■p iT (rhp) -a p2 

(17) 

(18) 

where    R/M,   n,  and a are constants which are material dependent and 
B(T)  and C(T) are empirically determined functions of temperature. 
It should be noted that if a Is set equal to zero Eq.   (18)  is the 
Noble-Abel equation of state and if both a and n are set equal to 
zero It becomes  the  ideal gas equation of state. 

The values of Cv and f(p,E,T)  corresponding to Eq.   (17) are 
giv«n by 

2 
Cv(p,T)  - A1 + A2T    -  (p>po) ~ -— (I [B(T) 

3 f 

+ i (p+p0)   C(T)]} 

f(p.E.T)   - E - E(P0.T0)  - A1(T-T0)  - ~ A2(T2-TQ) 

♦ £ <"-«o'< ^ ♦ i o^o'^' ■ ° 
while the values corresponding to Eq. (18) are given by 

Cv (P'T) " Cv0 (P0'T) " Al + V 

f(p,E,T) - E - E(T0.P0) - A1(T-T0) - | A2 (T
2-^) 

+ a(p-p0) - 0 

As additional equations of state become available they may easily be 
incorporated Into the code. 
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7. Area Discontinuity (gas-particle Interface) 

In order to examine the behavior of a two-phase material as It 
passes through an area discontinuity, moving at a velocity up, let us 
construct a control volume as shown In Fig. 6. (It should be noted that for 
the gas particle Interface uD - UL). It Is convenient to treat section B as 
an exit from the "main" flow fiela and section A as an entrance back 

Section B 

Section A 

III II 

♦ Ur 

Figure 6.  Area Discontinuity 

Into the field. Thus section A may be considered as the entrance of 
region II, and section B as the exit from region I. These two regions 
are coupled by constraints relating their respective properties across 
the control volume, region III. In the limit, we may let region III 
shrink to a line located at the area discontinuity. We will now 
determine these constraints. First we note In Fig. 7 that four of the 
characteristic lines fall outside the main flow field: namely char- 
acteristics 4B, at section B, and 1A, 2A and 3A at section A. Equations 
written along these lines must therefore be replaced. In Sec. (111,1) 
It Is shown that one compatibility equation Is associated with each of 
the four above-mentioned characteristic directions; In addition, the 
particle continuity equation Is written in finite-difference form along 
the characteristic 3A (d* - M)-  HIUB there are five missing equations 

which must be replaced by five new relations coupling the properties 
of section A with those of section B. 

Let us now determine these new equations. Since the particle 
equations are weakly coupled to the gas equations, the characteristic 
directions can be associated distinctly with either the gas or the 
particle phase. We shall assume that the equations written along "gas" 

characteristics (-rr ■ u + c 
at    — 

u) should be replaced by equations relating 

gas properties, and that equations written along the "particle" char- 
acteristic (4£ - Up) should be replaced by equations relating particle 
properties. ^ Therefore we will need three equations governing the 
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t 

(3B>    Zf-UPB 

(41)   g-uB-cB 

(1A) 
dx 
dt UA + CA 

(2A) 
dx 
dt " UA 

(3A) 
dx 
dt " V 

(4A) dt UA-CA 

Figure 7. Physical plane (x,t) plot of area 
discontinuity showing characteristic 
network. 
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change In gas properties between sections A and B, and two equations 
relating particle properties. 

First, let us consider the relations for the gas phase. Our 
treatment essentially follows that given by Shapiro [23].  In his 
approach, mass and energy are conserved between the two sections; 
momentum conservation is not considered, because to do so would re- 
quire knowledge of the forces acting between the wall and the 
fluid.  In place of momentum conservation, Shapiro makes the simpli- 
fying assumption that entropy is continuous across the area change. 
For our problem. It seems that this assumption is satisfactory. How- 
ever, if entropy calculations are prohibitively difficult because of 
the complexity of the particular equation of state chosen, then 
either the assumption of constant temperature between the sections 
or the momentum equation utilizing an approximation for the pressure 
on the wall may be used. 

Let us now determine the two equations governing the change in 
particle properties? One relation which is easily obtained is con- 
servation of mass between the sections, namely: 

W'V^ ■ apB(upB " V^J 
The remaining equation is more difficult to determine.  As was the 
case for the gas phase, applying the principle of conservation of 
momentum would require knowledge of the Interaction force between 
the wall and the particles; thus rendering its use impractical. The 
equation of energy conservation for the particle phase, although it 
could be applied, would not complete the system of equations since 
it is uncoupled from the system, and thus would merely add one equa- 
tion and one new variable Ep.  Entropy calculations are impossible, 
for the model Ignores the thermodynamlc aspects of the particle phase. 

One possible approach is to assume that the particle velocity 
does not vary across the area discontinuity. This supposition is 
reasonable when one considers that, although the gas phase velocity 
increases Instantaneously, the particles, being more massive, do not 
accelerate as quickly.  (Such an approximation brings to mind the 
assumption of frozen flow used to calculate property changes across 
shock waves; see section 11(5).) For area discontinuities, this 
approximation seems valid If c is small or if the area change is from 
small to large; however, inconsistencies (such as e>l) may arise with 
flows in which a highly concentrated particle phase travels from a 
large area to a smaller one.  For this reason, we have chosen to write 
the last of the five equations in the form: 

P A 
K«<U

PV 
where K is a factor which, most likely, depends on geometry and flow 

m 
parameters and must be determined experimentally. 

* Note that for the gas-particle interface these equations are not 
necessary since particles do not exist at Section B. 
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Continuity of «ntropy 

SA - SB (21) 

and for the particle phase, 

Conaervatlon of mass 

(22) 0A(upA'VAA " 'l^pl'VS 
Particle velocity aaaunptlon 

<VA - Wi (23) 

8.        Maee Tranafer Between Solid and Gas Phaae 

Following the procedure used to calculate the rate at which heat is 
released while the propellent Is burning we define the mass of an 
Individual particle, M , as 

P 
M   - V o 

P       P P 
The rate at which the mass of a single particle Is changing due to 
burning, ft ,  la then given by 

P 

where 

ft 
p 

- 
DP 

Dt Mp ■PP 

DPV 
 1 
Dt 

DPV 
P 1 DPx 

Dt Sp(Z) Dt 

end S  (z) la the burning surface 
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For the preaent, we have made the convenient assumption that 

which when combined with the mass conservation equation yields 

s 
K«-Ä- 

A 

It Is yet to be seen how the fector K affects the overall flow cal- 
culations. To summarize, the equations which will be used are, for 
the gas phase. 

Conservation of mass 
aA(uA-VAA * VVVS (19) { 

Conservation of energy 

(H ♦ ^ .. (H + «-), (20) j 
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Defining the number of particles per unit volume of mixture, N, M 

i o 
N -i-a- -£- 

V p V 
P P P 

we then can define the rate at which mass is being added to the gas 
phase per unit volume of mixture, w, as 

-c p TPV 
w - - ft N - --—E—-E 

P     v«  Dt (24) 

9. Burning Law (Regression Equation) 

Before introducing the specific equation specifying the regression 
rate,  let us first define  the regression distance Z(x,t).    To do this 
we define a parameter ii» to be a characteristic dimension of a propellent 
grain in the sense that it Is the least dimension which has to be 
travelsd by the burning surfsce in order to burn the propellent com- 
pletely.    The regression distance is then defined ss the amount that <|> 
has decreased from its initial value at a particular x and t.    The 
regression rate is then simply DPZ/DT.    The specific form currently being 
used is the non-linear burning law given by 

DPz ,T^ 
DT " a(T) 

6 (25) 

10.  Heat Released During the Burning of the Propellent 

In order to calculate q, the amount of heat released during a given 
time interval, we must be able to calculate the volume of the propellent 
burnt at any instant, V (x.t); or equlvalently, the Instantaneous particle 
volume V (x.t) recognizing that the two are related we can write 

P 

DPVb(x,t) (26) 
Dt       Dt 

If we now define a parameter K    as the amount of heat released per unit 
volume of propellent burnt,  then thi rete et which an individual particle 
is giving off heat is thus given by 

Dt 

DPV. 
C  * TJ Dt - - K Q Dt 

(27) 

Now defining N , the number of particles per unit mass of gas as 

V.v 
ppp 

o V 
(28) 
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we can calculate, q, the rate at which heat Is being added to the gas 
phase per unit nass of gas by 

q - N 
g Dt (29) 

Equation (29) can be combined with Eqs. (24), (27) and (28) to yield 

(30) 

11.    Calculation of the Initiation and Tracing of a Shock Wave 
Behind the Bullet 

Here we present techniques used to insert and trace a shock wave 
behind the bullet.    These proceedures will handle shock reflection 
from both the breach and the bullet precisely; however,  some order of 
approximation will be necessary to treat a shock passing through a 
gas-particle interface. It is proposed to cal- 
culate the singularity occurring at this interaction point precisely 
and then "smear" the reflected wave to simplify future calculations. 
The wave structure of this  interaction point is shown in Figs.   (8) 
and (9).    Figure  (8)  shows  the interaction of a right-traveling 
shock with the gas-particle interface.    The proceedure for calcu- 
lating this singularity is: 

a. Calculate the properties in regions a,b and c and assign them to 
the aesh points as shown. 

b. Calculate  the properties in regions 2,3 and 5  (region 4 notation 
is not used due to programming considerations)  (a<->l and c<->6) 

c. Assign the properties  in regions 2,3,5 and 6  to mesh points as 
shown.    This has  the effect of causing the properties, starting 
at point I,   to vary gradually until they reach the values of 
region 2 Just before  the gas particle interface.     A precise 
treatment would cause the properties in region 1 to be gradually 
reached at the gas particle interface and then change instan- 
taneously to those in region 2, see Fig.   (10).    (The properties in 
region 1 are not retained for future calculation). 

It should also be noted that the contact surface is not traced 
in subsequent calculations. 

Figure (9) shows  the interaction of a left traveling shock with the 
gas-particle interface.    The calculation procedure here is quite 
similar to that used for a right traveling wave and is as follows: 
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Reflected Shock or 
Rarefaction Wave 

Gas-Particle Interface 

Gas-Particle Interface 
(Double Point) 

Shock 
(Double Point) 

These points all have 

the same "x" location 

After Interaction 

Before Interaction 

Gas-Particle Interface 
(Double Point) 

Figure 8. A Right Traveling Shock Wave Interacting 
With a Gas-Particle Interface. 
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Contact 
/ Line 

Figure 9.  A Left Traveling Shock Wave Interacting 
With a Gas-Particle Interface. 
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I 
O) 

2 
D. 

After Simplification 
Before Simplification 

Properties are not 
retained after 
simplification 

x  (Distance) 

Figure 10. Pressure vs Position Plot Showing Singularity 

Properties Before and After Simplification 
for a Right Traveling Shock Intersecting with 
a Gas-Particle Interface. 

a* u 
3 

I 

After Simplification 
Before Simplification 

Properties are not 
retained after 
simplification 

x (Distance) 

Figure 11.    Pressure vs Position Plot Showing Singularity 
Properties Before and After Simplification 
for a Left Traveling Shock Intersecting with 
a Gas-Particle Interface. 



a. Calculate the properties In regions a,b and c and assign then 
to the mesh points as shown. 

b. Calculate the properties In regions 2,3 and 5  (region 4 notation 
Is not used due to programming considerations).   (a<>* 1 and c •■» 6) 

c. Assign the properties In regions 1(2,3 and 6 to mesh points as 
shown.    This has  the effect of causing the properties, starting 
at point II,  to vary gradually until they reach the values of 
region 3 just after the Interface.    A precise treatment would 
cause the properties in region 6 to be reached just after the 
Interface and then change Instantaneously in two steps to those 
in regions 5 and 3,  see Fig.   (11).   (The properties  in regions 5 
and 6 are not retained for future calculations) 

It should be noted that the contact surface is not traced in 
subsequent calculations. 

The simplifications  that we use in treating the shock-Interface 
singularity and in the subsequent calculations seem to produce errors 
which are,  for the most part,  dependent on the mesh size  (the smaller 
the mesh,  the more accurate the smoothing) and the magnitude of c 
(the smaller the value of e,   the smaller the reflected wave).    One 
will have to judge on an individual-problem basis  the magnitude of these 
errors. 
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III. NUMERICAL PROCEDURE (THE METHOD OF CHARACTERISTICS) 

1.  Calculation of the Characf rlstic Ditectlorn and 
Compatibility Equationa 

Before calculating the compatibility equations corresponding to 
Eqs. (1) to (11) let us eliminate the partial derivatives of p and e 
from Eqs. (2), (3) and (6) by using Eqs. ( 7), ( 8) and (9 ). We 
then arrive at the partial differential equations that are used in 
the computer code, namely: 

gas continuity 

o. + u 0, + ou, - GC 

gas momentum 

u,+uu,    +Aa,    +BE,    +Da        -GM 't x 'x x p,x 

gas energy 

E,     + u E,    + F u,    + G 0 ■ GE 
t x 'x p,x 

particle continuity 

0        +uo       +au       »PC p,t        p    p,x        p    p,x 

particle momentum 

u k + u_ u   - PM P.t   p p,x 

(31) 

(32) 

(33) 

(34) 

(35) 

and particle energy 

E+uE        +Hu        +Jo        "PE p,t        p    p,x p,x p,x 

where 

A - — p,     ; 
o r p 

B "      ^      P. E 

(36) 

D - Pi»5 Pp  (1-e)  l'p 
F-^ 

P 

PP0 
H--E- 

PP 

P u 

P    o 
P    P 

GC, GM, GE, PC, PM, and PE are the right hand side of Eqs. (1) to (11), 
respectively and the notation X,» represents the partial derivative of 
X with respect to y. 
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The characteristic directions and compatibility equaMons for 
this system of equation» has been calculated using both the directional 
derivative approach and the determinant approach producing identical 
results. Only the determinant approach will be presented here. 

In applying the determinant approach, we treat the time and spa- 
tial derivatives of the dependent variables as unknown quantities. 
If we add the six continuity equations 

do dx + o,k dt 

du - u,  dx + u,  dt 

dE - E,x dx + E,t dt 

do - o   dx + o   dt 
P P.x     P,t 

du - u   dx + u   dt 
P P.x     P.t 

dE - E   dx + E   dt 
P P.«     P.t 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

to our system of partial differential equations we arrive at a 
system of 12 equations in terms of 12 derivatives which when written 
in matrix notation becomes: 

u 

A 

0 

0 

C 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

u 

F 

0 

0 

0 

dx dt 0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

B 

u 

0 

0 

0 

0 

dx dt 0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

D 

G 

UP 

0 

0 

0 

dx dt 0 

0 

0 

0 

1 

0 

0 

u 

0 

0 

0 

ap 

H 

0 

0 

0 

dx dt 0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

dx dt 0 

" - 
0 0 a'x 
0 0 a't 
0 0 u'x 
0 0 u't 
0 0 E'x 

UP 
1 E't 

0 0 0p,x - 

0 0 
"p.t 

0 0 V 
0 0 "M 
0 0 Ep.x 
dx dt S.t 

GC 

(W 

GE 

PC 

PM 

PE 

da 

du 

dE 

daF 

dE_ 

(43) 
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Ut N be chc d«C«rmlnanc of eh« coefficient natrlx appearing in 
Bq. (43) and M1 be the determinant of the matrix formed from the 
coefficient matrix with the 1th column repleced by the column vector 
on the right hand aide of Eq. (43). The eolution for the derivativea 
may then be written in the form 

M O. - Mj N a, M„ etc. 

The characteristic directions for this system of equations are 
defined aa direction« in the x,  t-plane which cause 

* 
M - 0. 

In solving for these directions, it is convenient to reduce 
the 12 x 12 determinant N through column operations and Laplace 
expansion  [24],  to the following form. 

N 

dx-udt ■o dt 

Adt dx-udt -Bdt -Ddt 0 0 

0 -F dt dx-udt -Gdt 0 0 

0 0 0 dx-iidt ■«r   dt P 0 

0 0 0 0 4c-u dt 0 

0 0 0 -Jdt -Hdt dx-udt 

(44) 

(45) 

dx-udt  -o dt    0 

-A dt  dx-udt  -B dt 

0    -F dt  dx-udt 

dx-udt      -o dt 0 

0 dx-udt 0 

-J dt -H dt      dx-udt 

or 

where 

N*- (dx - udt)[dx - (u ♦ c)dt][dx - (u - c)dt](dx - u dt)3   - 0 

c2-oA+(B)(F).|^JL|* 
P 
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dx 
dt 

and 

dx 
dt 

where 77 dt - u 

Thus  the characteristic directions are 

dx dx 
U    ;      d^" U+ C     ;       dl"  U"  C 

(46) 
P 

is a triple degenerate root. 

It can be seen that in order to have a  finite solution for the 
partial derivatives in Eq.   (44)»   the M^ must equal zero when N 
equals  zero.     The setting of the M^ determinants equal to zero  leads 
either to an identity,   zero equals zero,  or to one compatibility 
equation corresponding to each of  the characteristic directions 
(note  that it  is possible  for as  many as  three distinct compatibility 
equations  to exist along the triple degenerate root ^2 - IU,).     ^or 

this system,  only one distinct compatibility equation exists  along 
•Si - Up, which indicates that the system is not  totally hyperbolic 
and  thus other equations in addition to  the compatibility equations 
are needed to  complete the solution. 

The compatibility equations   for this system are 
1 dx 

along -TT " u 
dt 2 F 

G[a^ du    -  (u -u)do  ]  +  (u -u)     (dE do) p      p p p p a 

-  {G[o     PM -  (u -u)  PC] +   (u -u)2   [GE - - GC]}dt (47) 
P P pa 

along 77 " u + c 
dt 

(G x B + D x c)   [c    du    -  (u -u + c)   do  ] 
— P      P P P 

+ (u -u + c)2  [B dE + cdu + Ado]- 

^(G x B + D x c)   [0    PM -   (u -u + c)  PC] — P P 
-      2 ,, (48) + (u -u + c)     [B x GE + c x GM + A GC]}dt (^9) 

and along -rr m u at p 

du   - PM dt (50) 
P 

As mentioned before,  there are two compatibility equations 
missing.    Thus,   two additional equations must be supplied.    We will 
follow a procedure similar to th&t used in  Refs.   [6] and  [9] 
for one-dimensional two-phase flow and  Refs.   [25] and  [26] for 
two-dimensional flows and write Eqs.   (34)  and (36.)  in finite dif- 
ference form along the particle path line of the particle phase 
(dx/dt - Up)  namely: 31 



„.    + a^ u        - PC Dt p    p,x (51) 

and 
DPE 
-r-2 + H u        + J a Dt p,x p,x PE (52) 

The addition of Eqs.   (51) and (52)  to our numerical procedure 
necessitates the calculation of Up|X and o. x at the new point. 
To accomplish this we follow a procedure similar to that used In 
Ref. [6] and write the "continuity" equation for Up and a- along 
the gas characteristics,  dx/dt ■ u + c,  namely: 

and 

d up-  [ 
P.x 

(u + c) + u   J dt 
P»t 

da    -  [ a (u + c) + a    ^J  dt p      l    p.x v    -   '        p,tJ 

(53) 

(54) 

Equations  (47)  to (54)»  after being written in a second order 
accurate    finite-difference form, will be used to generate a 
solution to  the problem. 

Our general numerical procedure will utilize the Hartree 
(constant time) scheme.     In this scheme,   it is assumed that the 
values of all dependent variables are known at discrete mesh points 
lying on a constant time line.    A new time line is established to 
meet a stability criterion and the properties are calculated at 
points where  the gas particle path originating from the known points 
on the old time line intersects  the new time line. 

The only problem th .t arises in the use of this  technique 
concerns Eqs.   (53) and  (54).    As can be seen,  the time and special 
derivatives of Up and Op must be available on the old time line be- 
fore the new time plane can be calculated.     If the values of Up and 
op and not their derivatives are specified on an initial constant 
time line the x derivatives will be calculated using 3 point forward 
or backward difference schemes for the left and right boundaries 
respectively and central difference for interior points and then 
Eqs.   (4) and  (5) will be solved for the time derivatives.    These 
values will then be stored for use in calculating the next time line. 

2,      Mathematical Implications of the Physical Assumptions 

Before examining the effects that our physical assumptions 
have on the characteristics,  let us see what we can conclude in 
general about our system of equations.    To do this let us partition 
the determinant N*    Eq.   (45),  into 4 minors, namely 
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where 

N 

<! i    ^2 

dx-udt -o dt 0 

-A dt       dx-udt -B dt 

0 -F dt       dx-udt 

% - 

0 0 0 

-D dt 0 0 

-G dt 0 0 

0 0 0 

0 0 0 

0 0 0 

dx-u dt •a dt 0 

0 dx-u dt 0 

-J dt -H dt dx -u dt 

Applying Laplace expansion to N we can see that If all the terns 
In Q3 are zero (the particle equations are weakly coupled to the 
system,   [24]). 

N*-   iQj   x  iQj   . 

Thus, as long ss Q3 - 0, any change to the terns In Q2 will not 
effect the characteristic directions of the systen. 
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Now let us examine the effects of a) ignoring the terns con- 
taining e,x and b) Including terns which contain a factor p/pp. 
Case (a) Is equivalent to setting D, G and J equal to zero. 
Immediately one can see that setting D and G equal to zero cannot 
effect the characteristic directions of the system because they 
appear only In Q2.  Examination of Q4 quickly shows that J does 
not enter Into the evaluation of the determinant and therefore Its 
value doesn't effect the characteristic directions.  The effect of 
neglecting efx on the compatibility equations Is not quite as 
simple to see; however, after expanding the M^ determinants one 
finds that setting this term equal to zero yields two distinct 
compatibility equations along jj* - Up. 

The Inclusion of terms containing p/pp, case (b), has the 
effect of altering Q^, Q2, Q3 and Q^ by adding a tern Involving the 
acceleration of the gas to the particle momentum equation, a term 
involving the acceleration of the particle to the gas momentum 
equation, and terns Involving both accelerations to both the gas 
and particle energy equations. The determinant of the coefficient 
matrix, N, for this system is of the form: 

N*. 

dx-udt -a dt 0 

A dt aj(dx-udtJ -B dt -D dt a2(cix-updt) 

0 c2(dx-udt) Cj(dx-udt) -G dt cjCdx-yt) 

0 0 0 dx-udt -0 dt 

0 bj(dx-udt) 0 0 b- (dx-u dt) 
£             P 

0 d2(dx-udt) 0 0 d3(dx-u dt) 

0 

0 

0 

0 

d1(dx-u dt) 

where the coefficients a., a_, b , b , c., c-, c_, d., d_ and d- are 

In general functions of the dependent variables. Aa can be seen, 
this system is quite a bit more complex than the one actually treated 
in this report.  The expansion of N will result in a 6th order poly- 
nomial in (dx/dt)^ which must be solved numerically to yield the 
characteristic directions.  The number of real characteristic directions 
resulting from this equation is directly dependent on the values 
of the coefficients; thus, the nature of the system, at lease con- 
ceptually, could change aa the values of the dependent variables 
change. The derivation of the compatibility equations present a 
similar problem because they cannot be determined until the char- 
acteristic directions are known. 
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3.    Finite Difference Form of the Compatibility Equations 

The specific finite difference equations resulting from Eqs. 
(47)   to (5l) will now be presented.    Referring to Fig.   (12) we see 
that the locations where  the characteristics eminatlng from the point 
being calculated,  point 4,   cross the previous  time  line,  are labeled 
points A,8,0 and D. 

/ T^ 
s I   \ 

s I 
/ 

; 
/ 

\ 

\ 

-*- 

At 

B 

•    - - -      mesh points 

0 - - -  intermediate points (base of characteristics) 

Figure 12.  Characteristic network used in 
finite difference scheme 

Utilizing the above point scheme and the notation that X^ corresponds 
to a property, X, evaluated at point A, X^ corresponds to (Xi)A and 
At^ corresponds to At between points 4 and A: equation (47) solved 
for E4 becomes 

4 C      2 
4    p4    .     C    pC 

L(up4-U4)2      Sc'V, 
(UP4"UPC) 

F F i r   G4   A   
cc 1 .        , . 1 

'  2  L(UP4-U4 >       (UpC-Uc)J    V " 0PC        '1 

+ ^C f   G4 gp4 PM4 +    GC qpC PMC      G4 PC4 GC PCi 

2    L   ^p4-U4)2 <VV    '  (VU4)       (UpC"U, 

_^4      FC GCc] 
\     '      öc   J 

(o4-ac) 

+ GE4 + GEC - (55) 
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equation (48) solved for u, becomes 

U4 " UB " 2 
14    p4  .       IB    pB 

Y224C4 ^B 

(u p4 UPB> 

4 14       ,     IB 
Y24C4 Y2BCB 

(V ' 0PB) 

B/       B0 

C4       CB 
(E4-V -i 

A/       A, A+2B 
c4      CB 

(a4 - aB) 

where 

and 

At, Y..  o  .  PM.      Y-, o _ PM_      Y,.  PC. 
14    p4      4 .     IB    pB      B _    14      4 

_..,...  _   . -  ■■ 

Y      c                      Y 1       24    4                     2B 
cB            Y24 C4 

Y1B PCB  ,   B4 GE4 
Y2B CB        C4 

+ 
BB GEB 

CB 

+      GM4      +    GMg ,  A4 0C4  ,  ^ GCB 1 
C4              CB          J 

Yj^-GxB + Dxc 

Y_ - u    - u - c 
2        P 

(56) 

equation(49)solved for a.  becomes 

04-0A- 2 

Y34 0p4 ,  Y3A gpA 
2 2 Y       A Y      A 

^4 A4        X4A    A   ' 
w 

4 Y34 + 
y3A 

Y44A4 T*AAA 

B4 + 

1 

BA 
A4 AA 

p4        pA7 

(E4 - EA) 
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(u4 - uA) 

Ati Y->/    0     /     PM/ YQA   a     A    PM*  A        34    p4      A  .     3A   pA      A 
2 Y4A A4 Y4A    AA 

Yi/  PC/       YaA PCA      B/  GE. 34      4      ^JA^ A        4 4 
Y44A4 Y4AAA 

where 

and 

BAGEA      S^ 

Y. -GxB-Dxc 

CAGMA + GC.  + GC4 H A 

Y     -   u 
4        p u + c 

(57) 

equation  (50)   solved for  u ,  becomes 

V ■ v + -r (PM4+ PMD) 

and Eq. (51) solved for a , becomes 

ap4 " 0pD ^ ~ 
PC. + PCn - o . 

4    D   p4 

9u 

dx 

(58) 

- a pD 

3u 

9x (59) 

Equations (55) to (59) are the equations used to calculate a regular 
point in our grid. Under certain conditions, however, they must 
be modified. 

The first special case we will present occurs when the proper- 
ties at points A,B,C and D are identical.  When this occurs, Eqs. 
(47) to (51) reduce to 

du - GM dt 
do ■ GC dt 
dE - GE dt 

du  - PM dt 
P 

do  - PC dt 
P 
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These equations are finite differenced by averaging GM, GC, GE, 
PN, and PC between point 4 and point C. 

The second special case occurs when either 

or 

u , - u, ■ 0 
pA   4 

V - uc - 0 

In this case the use of Eq. (55) would lead to a division by zero. 
Thus, we must finite difference Eq. (47) In the following form, 

E4 " EC +  : ri f G4 ap4+ Gc apc) [T2 (PM4 + ^ 
(up4-U4+U

PC-UC)     l 

"  (up4-U
PC)]  "  [G4(up4-U4)    * VVfV] 

«[^-4.PCc)-(V.opC)]-[!a^ 

/ic<V-uc> j j-^c (GC^ + GCc) _ ^ . ac)jj 

Atc 
+ -j- (GE4 + GEC) 

4.    Stability 

We have conducted an Investigation to gain Insight Into the 
stability of a mixed hyperbolic-parabolic system of equations such 
as we have here.    Actually deriving a mathematically rigorous sta- 
bility criterion for the highly non-linear equations of this re- 
port Is quite a formidable task and not within the scope of this 
research.    However, we feel that It Is quite helpful to have an 
Idea of the type of problems that might be encountered In treating 
our mixed system.    It Is our conclusion that the standard stability 
criterion for hyperbolic equations may not be sufficient for our 
system. 

To demonstrate the above mentioned conclusion let us look at a 
particular system of equations for a problem coupling sound propa- 
gation and heat flow as presented by Rlchtmeyer [20]* namely; 
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- - c - (w + (Y-l)e) 

3w    3u 
8t " C 3x 

2 
3e    3 e    3u 

where u is the material velocity, w - c V/VQ, V is the specific 
volume, e ■ E/c, E is the specific internal energy, c is the 
isothermal sound speed, and a is the ratio of thermal conductivity 
to specific heat at constant volume.  These equations are formed 
by coupling the hyperbolic fluid dynamic equations to the para- 
bolic heat flow equations.  The first two equations above may be 
said to be hyperbolic in nature, while the third is parabolic in 
nature.  An analogous situation occurs with the equations of this 
report where Sqs. (1), (2) and (3) are hyperbolic in nature, and 
Eqs. (4) and ( 5) are parabolic in nature. 

Without going into the finite differencing details which are 
presented on page 171 of [20] we will proceed right to the con- 
clusions concerning the stability.  Although a precise stability 
criterion for this complete system was not found, Ref. [20] states 
that it is surely necessary for it to satisfy the stability cri- 
teria of both the uncoupled fluid dynamics equations and the un- 
coupled heat flow equation.  The stability criteria for these two 
systems are respectively: 

Ax 
and 

0 At   < 1 

(Ax) 

It is also stated that in the limit, as Ax and At go to zero, the 
second condition implies the first and thus is assumed to be the 
stability criterion for the system. 

This example demonstrates the possibility that a mixed hyper- 
bolic parabolic system may be finite differenced in such a manner 
as to yield a stability criterion which is directly dependent on 
the parabolic segment of the equations. With this in mind let us 
examine the possibilities that exist for our system of equations. 

a.      The hyperbolic stability criterion dominates and is given by 

( Iu|+C)^<K 

or 
A „ „   K Ax . „ 

where K is equal to 1. 39 
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When this criterion Is programmed, the value of K Is set somewhat 
less than 1 to allow for the fact that the properties on the new 
tine line are unknown when At Is calculated and must be estimated. 

b. The parabolic stability criterion dominates and is of the 
same form as the hyperbolic criterion.  This criterion is programmed 
in the same manner as the hyperbolic criterion except that K may now 
be significantly less than 1. 

c. The third possible criterion results from the comparison 
of the parabolic segment of our system with the heat flow equation 
in Sec. (11,4). It can be shown that from a characteristic stand- 
point the roles of x and t are reversed between the two systems. 
The stability criterion for the heat flow equation is of the form 

^-< K2 

Ax 
which leads to the possibility that the stability criterion for 
our parabolic equations may take the form 

At 
Ax 

> K! 

or 

At > K2(Ax) 
1/2 K, 

If K is less than K. then a value of At may be chosen such that 

K3< At < K, 

However, if K3 is greater than Ki no value of At will satisfy both 
the hyperbolic and parabolic stability criterion and the system is 
unconditionally unstable. 

All indications from past research are that this last case does 
not exist; Rudinger [10] and Rudinger and Chang [11] have solved 
systems of equations which are quite similar to those presented here 
and have not reported stability problems. It is felt that, although 
care must be taken in running the code, selection of At to achieve 
stability can be achieved by using the stability criterion of a. and 
allowing K to vary between 0 and 1. 
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5. General Point Iteration Procedure 

The most difficult portion of the computer code is centered on 
the solution of Eqs. (55) to (59).  At first a simple procedure was 
tried where, each equation is solved for one particular variable, 
then updated by averaging the most recent value with the old value 
utilizing a relation of the form 

+ BK x u n-1 
an+l AK (60) 

WIK re the values of AK and BK can be adjusted at the programmers 
discretion.  This proved unsuccessful,causing rapid divergence of 
the system.  Upon close examination of the equations, it was 
felt that the best hope for solution would be to uncouple the gas 
and particle phases and solve Eqs. (65), (56) and (57) as a set and 
Eqs. (58) and (59) as a set.  This is accomplished by assuming 
that the particle properties are constant while solving Eqs. (55). 
i56) and (57) and conversely the gas properties are constant when 
solving Eqs. (58) and (59)«  Even making this assumption, the solu- 
tion of Eqs. (55), (56) and (57) for the gas properties is a quite 
formidable task due to the high degree of nonlinearity.  It was 
decided to solve these three equations for the variables  , u and E 
using the Newton-Raphson technique.  Before proceeding, it should be 
noted that Eq. (55) is linear in the variable E and can be written 
In the form 

E - E(u,o) (61) 

Thus conceptually, Eqs. (56) and (57) when combined with (61) nn 
be written in the form 

g(u,o) - 0 

f(u,o) - 0 

respectively.  The Newton Raphson procedure for two equations 
can then be utilized, namely 

and 

where 

Vi -  u    + Au n 

a   .     -  a    + Aa n+1         n 

f* 11        „ 9f 
/XJ 

Ao - f*3        -«fl 3                3u 
/XJ 

XJ - 3f  3£_      3f  3^ 

(62) 

(63) 

(6A) 

(65) 

41 

— .,.> ...w.*—■■■■»■»■ ' 



Before applyinR this technique further convenient simplifi- 
cations were made.  They are as follows: 

a. along with holding the particle properties constant we decided 
to also hold p and c constant.  This assumption was more or 
less made out of necessity due to the difficulty in evaluating 
the partial derivatives of g and f. 

b. Provision was made and subsequently adopted to hold the values 
of GC, GM, GE, PC, PM constant through this sub iteration. 

Havinp irade these assumptions preliminary calculations produced rapid 
convergence of the Newton-Raphson routine and subsequent convergence 
of the entire general point routine by then solving Eq. (58> for Up 
and Eq. (59) for Op and then correcting the entire set of solutions 
using equations of the form (60) with AK ■ 2 and BK ■ 1. 

The calculations proceeded routinely for many time lines utili- 
zing this technique; however, as the value of up started to approach 
u (particles became small) the solution to the system of equations 
began to diverge.  To better understand the cause of this problem 
and the necessary steps to correct it the entire system of equa- 
tions was closely examined.  It was found that the trouble was rooted 
in the solution of Eqs. (55), (56) and (57) and more specifically in 
Eq. (55).  To analyze this problem we will write Eq. (55) in a 
general form, namely: 

Mu.o) 
-= r(du -PMdt) + 
/ \*      P (up-u) 

f,(u.o) 

(u -u)   <dqp-pcdt) + V".0)       (66) 

Km Now let us examine a term of  the nature  (up-u)     (m ■ -1,-2)  in 
context with our iteration proceedure noting that Up is constant. 
To do this  it is simplest to forsake rigor andgo directly to a 
typical numerical example.    First let us assume a problem where the 
difference between Up and u is large;   such as: 

u    -    10 

u    - 100 

Now let us see what happens to the coefficient of the first term on the 
right hand side of Eq. (61,), which we will call F., if u varies by, 
let us say 2 from one iteration to the next, i.e. 
equal to 2. 

1)  for u ■ 100  we have 

Au in Eq. (64) is 

2)  for 

,100 

- 102 

f 

,102 

100 

8100 

f 

we have 

102 

8464 
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assuming lhat f.   a [    which In reality 1B pretty close to being 

t i ue we have a percent change in F of approximately 4%. 

For our second example let us assume a problem where the dif- 
torence between Up and u is small such as 

up =•  95 

u  -  100 

Now again  let us assume  that  u varies by 2 from one  iteration   to  the 
next  and examine  F^ or 

I) for u 100 

,100 
.100 

25 

2) for u »  102 

.02 
1 

.102 
1 
49" 

I 

Making  the same assumptions  on  f,   as  in  the previous  example we  can 
see  that the change  in Fj  is now    approximately 50%.     It  turns  out 
that  this  rapid change in F^ causes   the entire Newton-Raphson  tech- 
nique  to become unstable. 

The problem now centers on what steps should be taken to correct 
this  deficiency.     It is quite obvious  that we cannot  tolerate "large" 
changes in u during an Iteration when the values of u and Up are 
"close".    One approach  to the problem would be to attempt to  improve 
t* r   first guess;  however,   first guesses consisting of  the base point 
properties and the solution of  the  linearized system of equations 
proved unsuccessful and  this approach was abandoned. 

The approach that proved successful is as follows.     First,  attempt 
to solve  the complete set of equations.     If this  falls,   set  fi equal 
to  zero and solve that set of equations.    Then use its solution,after 
having corrected E^   by adding the £]_ term back in,as a first guess 
in solving the complete set.     If  this still fails,   set both  fi and (2 
equal to zero and follow the same proceedure. 

The degree to which  the solution of the equations with f^ set 
equal  to zero approximates  the solution to the complete set  is  re- 
lated  to how close the term (dup - PMdt)  is to zero.     Notice that 
his  term is in the same  form a«   Zq.   (35)  the only difference being 
that   Eq.   (61)   is written along dx/dt • u and  Eq.   (35)  along dx/dt ■ Up. 
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Thus It can be easily seen that as up approaches u, the term 
(dUp-PMdt) written along dx/dt - u approaches zero and the 
solution of the simplified system approaches the solution of the 
complete system.  In summary, it should be noted that although the 
term (dUp-PMdt) is approximately equal to zero when the system 
converges, during the iteration proceedure It can become quite large 
and cause convergence problems. 
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IV.    Results and Discussions 

Before presenting a complete test run for the M16  rifle, we will briefly 
point  out  two  features of  the code TWOFLO which are not  treated by other codes. 
The  first  feature  is the treatment of a gas only region behind  the bullet, 
typical plot of e  and u vs.   time in the vicinity of  the  interface between 
this gas only region and the two phase flow region is shown in Fig.   (13). 
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Figur« 13. Plot of loading, e, and gaa velocity, u, 

v*. distance from the breach, x. 

Notice that at this interface there Is a discontinuity In c leading to a 
discontinuous drop In particle velocity. The second feature deals with a 
shock wave traveling behind the bullet. Figure (14) shows a plot of the 
physical plane and a plot of pressure vs. position as the shock passes 
through the gas-particle interface. Referring to the pressure curve In 
Fig. (14) one can see that the effects of the contact line have been neglected 
and the rarefaction wave has been smoothed out consistent wich the dis- 
cussion in Sec. (11,7) 
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l'rcsontod nex.  are niiimrlcal   results   for  the Ml ft  rifle    beginning at 
the  lime of  complete  ignitton and extending  until   the hüllet  leaves   the 
Kirrel. 

Two separate runs 
I'he propellant used is 
force between the part 
having the same radius 
assumed to be compacte 
code by shortening the 
compaction, c, was 0.5 
In  the sample  input se 

The sizes  of  the 
as  follows: 

were made each with  a different  size propellant  pnrti< 
pancake shaped,   (1.814x10"3Kg  of WC 846).     The drag 

icles  and  the gas  is  approximated by  that of  a  sphere- 
as  the  radius  of  the  pancake.     The  propellant was 

d by  the  initial  primer blast.     This  is  treated  in   the 
rear of the cartridge by  0.005m.     The  loading after 

75.     Other pertinent  data  for  these  runs  can be   found 
ction of Appendix C. 

propellant particle  used  for  the   runs are sununarized 

Particle Radius Particle Thickness 

RUN A 2.730 x 10"Am 3.810 x 10~4m 

RUN B 1.365 x 10"4m 1.905 x 10~4m 

For Run A the particle dimensions conform to the average dimensions  of the 
actual propellant.     The particle size of Run B is one-half of that  of Run A. 
Run B was  chosen to determine the effect of  increasing the propellant surface 
area.     The calculated results  for these  two  cases are compared with  the 
experimental  results of Trafton  [28], 

Figure   (15)  shows the velocity of the bullet plotted against the distance 
from the base of the cartridge.    Run A yields a muzzle velocity  that  is  35% 
lower than the experimental one;  Run B produced a much higher muzzle velocity, 
but  is still 17% lower than the experimental value 

Examining Fig.   (16)  one can see  that  the pressure produced at  the 
midpoint  of  the  chamber by Runs A and B brackets   the experimental values 
fairly well,  noting that the 300 psec time duration for complete ignition to 
occur  (this  represents the time between primer ignition and the initiation 
of TWOFLO calculations)  is not exact;  any error in this time would shift  the 
pressure curves horizontally.    Although Run B produces pressure higher than 
the experimental value at a station in  the chamber,   it produces a much lower 
pressure at  a station further downstream in  the barrel,  as shown in Fig.   (17). 
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Klg.   (17)   is  a  plot  of  pressure vs.   time  at  the  gas port, 
substantially  down  the barrel.     By  this   time,   both  Runs  A and B produce 
pressures  that are  substantially below the experimental   results.    These 
results seem to  indicate  that  too large of a portion of   the  energy,   as 
i-omputed by TWOFLO,   remains  in the  rear section of   the  barrel whereas  it 
should be more  concentrated near the bullet. 

There are  two possible  reasons  for  the discrepancy  between  the 
calculated and experimental  results.    The  first  is  the  uncertainty about 
the physical parameters used as input data in  the  calculation.     These 
include  the burning rate of  the propcllant,   the drag coefficient of 
particles,   ignition time,   the state at the end of  the  ignition process, 
the friction between  the bullet and the barrel,  etc.    Hopefully,  a 
computer code that  is numerically accurate,   together with certain 
easily measured physical parameters,  can be used to determine all the 
other parameters,   in  the  future. 

The other possible reason is the inaccuracy of  the  code,  either 
in the governing equations  used, or in the numerical solution of  these 
equations.     Preliminary test  calculations show  that  the numerical 
solution converges;   solutions  from using two  different mesh sizes 
vary very little.     Calculation of a simple one-phase flow problem also 
indicatesi  that  results are  very close to the exact  solution.    Therefore, 
we have confidence  in  the numerical accuracy. 

As discussed  in Appendix A,  the governing equations  used involve 
certain approximations.     In particular,  a term in the particle momentum 
equation has been neglected for simplicity  In applying the method of 
characteristics.     This  term is relatively small for small values  of e, 
but can become Important  for large value of e.     It  can be seen from 
Eq.   (A12)   that by neglecting this term, we decreased the particle 
acceleration.     This might have contributed to the slower motion of the 
particles,  and the concentration of energy and pressure near the chamber. 

For further development  of this work, we suggest  the following: 

a. Modification of Governing Equations - Although the equations we used 
are quite elaborate and include many more  terms  than most earlier 
works,  preliminary numerical results  indicate  that  certain 
neglected terms  should be retained.     For Instance,   the Du/Dt  term 
in the particle momentum could be retained. 

b. Complete Test Runs - Appropriate sample problems should be run with 
the code to ascertain  the convergence and stability of the numerical 
calculation.     Comparison with simpler problems with exact solutions, 
and with other numerical methods should be made.    A parametric 
study  to determine the  Importance of various  terms  in the 
equations,   and  the effect of certain physical  quantities would 
also be desirable. 
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Comparison with Experimental Results - Tills type of comparison 
can serve  to determine  the  accuracy of the calculated  results 
if  the experimental   results  are  accurate,   or vice  versa. 

Solve a Proolem with  Shock Waves  - This  code  has  the  capability 
to  treat  shock wavi-s;   shocks are   traced exactly,   instead of being smean-' 
hy  artificial viscosity  as   In  finite-difference methods.     The 
subroutines  are all  debugged,   but  have not been  tried out on  a 
physical problem with  shocks.     This should be done. 

In conclusion,   the  following points about  the TWOFLO code can be 
made. 

3. 

It is one of the most "sophisticated" one-dimensional codes.  It 
treats the two phases separately, includes the effects of wall 
area change, wall friction, heat and mass transfer through the 
wall, includes the 3c/^x effect, etc.  The governing equations 
include many additional terms as compared with other existing 
codes. 

It is accurate.  TWOFLO incorporates the method of characteristics, 
which is inherently more accurate than the finite-difference method. 
It handles the initial and boundary conditions in a logical manner. 

It has the capability of treating shock waves.  Shocks are traced exactly. 
For those physical problems where shocks are present, this code 
can yield more accurate results.  Even in problems without shocks, 
the characteristic lines and contact lines calculated from this 
code can reveal more about the nature of the flow. 
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APPENDIX A-DERIVATION OF TWO PHASE FLOW GOVEfLVINr. EQUATIONS* 

In deriving  the governing equations for this system let us 
treat  the gas  phase and  the particle phase separately while  cou- 
pling their motion  through  interaction  terms,     ■./hen  treating each 
phase, we will assume  that   it  forms a continuum and occupies  the 
entire control volume at a given instant.     In utilizing  this con- 
cept, we must replace the classical density which represents mass 
per unit volume,  with a new term representing mass per unit volume 
of mixture.     We will  also assume  that the particles are  rigid and 
that they may be considered to be large with respect to the molec- 
ular size of the gas and thus do not contribute  to the pressure 
of the mixture.     Having taken these assumptions into consideration, 
we may write the governing equation for each component of the 
mixture. 

1.      Continuity equations 

The continuity equation for the gas phase can be obtained by 
establishing a control volume and equating the tine rate of increase 
of mass inside the control volume to the time rate of mass added 
to the control volume, where  the mass added is composed of three 
terms;    the net mass  flux into the control volume through the end 
surface normal to the flow,   the mass addition resulting from the 
particles burning and the mass transport through the wall,  or 

HaA) m m 3 (ouA) 
at ax +  (wA)  -   (u A) (Al) 

vhich can be rearranged as 

Da .  3u 
DF+0 3l 

au dA 
A dx 

a) - (ü (A2) 

Similarly, the continuity equation for the particle phase is 

3(0 A)           3 (a  u A) 
 L-_. _  P P      , 

3t 3x (a>A)  -  (u    A) (A3) 

(A4) 

which can also be rearranged, producing 

D^ 3U ff u      ,. 

Dt p 3x A       dx % 

2.  Momentum equations 

Before proceeding to derive the momentum equations we will 
■eke several additional assumptions, namely: 

* We would like to make a special acknowledgement to Or. Aivars Celmins who 
made an invaluable contribution in the formulation of the equations in 
this Appendix. 
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a. When mass transfer occurs between the phases,  the par- 
ticle phase always loses mass,  the gas phase always gains 
mass; or u ^ 0. 

b. The gas and particle phases may discharge through the 
wall,   but injection tj net treated, or 

w    > 0;       u      > 0. w — wp — 

When leakage occurs,   the gas and particle phases lose 
mass that is moving ar  velocities of u    and u w wp respectively.    One possible assumption is to consider the 
discharged mass having the same axial velocity as the 
"parent" media.    This la justified by the fact that within 
the flow field our one-dimensional assumption does not 
account for variations in velocity across the cross- 
section. 

c. During the burning process the gas phase gains momentum 
equal to uu. while the particle phase loses the same amount. 

Having made these assumptions we will now derive the momentum equa- 
tion for the gas phase which equates the time rate of increase of 
momentum in a control volume,  to the forces acting on the control 
volume (positive if acting in the positive x direction).    These 
forces Include the reaction of the net momentum flux through the 
main entrance and exit of the control volume,  the force due to the 
momentum flux associated with mass addition from burning» the r. • 
action due to momentum loss associated with mass passing through the 
wall,  the pressure gradient force,   the interaction force of the 
particles acting on the gas    and the force from the outside wall, or 

liSAu}. -ÜS^dl + «u A -  (W    u A)  - A |^ - fA + F A (A5) 
3t 3x p        v w    w 3x w 

where the term u   Is the x component of velocity of the gas leaving 
the control volume through the wall. 

Equation (A5), after combining with the gas continuity equation, 
Eq.   (A2),  can be written as 

0 D? "" 15 + Fw " f + "<Vu) * ,,V»<Vtt) (A6> 
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Similarly,   the momentum equation for the particle phase is 

3(o Au )       3(o Au2) 
 E—E-. . —^_E.    -  (uu A) -  (w    u    A) + FA + F    A 

3t 3x v "p  '       v wp wp ' wp 
(A7) 

which upon simplification becomes 

(A8) 

where the term !!„_ is the x component of the velocity of the 
particles passing through the wall. 

In Eqs. (A6) and (A8), the interaction force between the gas 
and the particles, F, in general, includes four types of forces, 
namely, the viscous drag force, the pressure gradient force, the 
apparent mass force due to the .acceleration of the gas surrounding 
the particles and the force due to nonsteady flow.  Note that the 
drag force does not include the pressure gradient effect. Often, 
the drag force determined experimentally contains both the effects 
of viscosity and pressure.  Special care must be taken to separate 
these effects in using the present set of equations. A detailed 
discussion on these forces may be found in Hinze [Al], Rudlnger [A2], 
Pal [A3] and Willis [A4].  Let us follow the approach of Hinze, and 
consider the force acting on a spherical particle, given by 

F • 
8 

3        3 
I    i ,   v   itD 3p . 1 TTD 

) (t-,)-1'2 dT 

If we now define the number of particles per unit volume of mixture, 
N, as 

N - 
p x(Volume of a particle) 
P 

6c 
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then 

F - N x F 
s 

3CDP    , ,, ,       i£        1 

+ i D * 

t 
Du 

0 
DT 

DPu 

D, 

Du 
Dt 

DPu 

Dt 

(t-t)"1'2 d, 

-  c 
9x 

(A9) 

where F represents the interaction force without the pressure 
gradient  term.    As  the value of .£. becomes small, the apparent mass 

pp 
force and the force due to nonsteady  flow become negligible.     It is 
assumed for the problem presented here that  the values of o/cp 
encountered are small enough so  that  these  terms can be neglected 
leaving us with an expression for F which Includes only the 
viscous drag force, namely: 

F - -£- K,   |u-u   |(u-u ) 
P_    1 P1 P 

where 3Cna 
K    -      D P 

1        4D 

Setting Uy equal to u and L^Q equal to Up,  Eqs.   (A6),   (A8)  and 
(A9)  combine to become 

§? +-^ £ ■ - ^<r-V - "<V")4""<U--U)1 
w    w 

(A10) 

and 

DPu 
+ J_ |£. - -L [ (F      + F)  - UJ^OI    -u )] (All) 

Dt o    3x      a wp wpx wp    p   J 

p P Sp 
respectively.     Solving eq.   (A10)  for r1- and substituting into 
Eq.   (All)  yields: X 

.A . J.£ä . J. {F      + F + -i-    [F-F -«(u -u)] 
Dt        p    Dt      o        wp (1-e) w        p 

P P 
(A12) 

+ a)  (u -u) ]  -a    (u    -u )} wx w    'J       %*pv wp    p 
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The term p QT will now be neglected for simplicity. With this term 

neglected, the particle equations are weakly coupled to the system. I.e.., 
the particle equations do not contain derivatives of the gas variables 
u, o, and E. The ratio of this tern over the first term of A12 is 

5ü     . IE + _L. (F . F) 
Dt  m        3x 1-e ^ w   ' 

. |£ + i (F + F ) 
3x e  v    wp' 

which is much less  than one when p/p    and e are both small.    For instance, p 
in the numerical example treated later,  this ratio is less than o.l5 for 
most points in the flow field.    However, near the breech and during the 
time immediately after Initiation,   this ratio may be larger than o.5 and the 
omission of the Du/Dt term may be a poor approximation.    An attempt should 
be made to retain this term in future refinement of this work.     Eq.   (A8)  is 
then reduced to 

{w ((F"Fw) ■ "V0 + Ww<vtt) 

+
   (F  +  F™>   -   UU«^-Un>} (A13) wp wp   wp    p 

Equations   (A10) and (A13) are the momentum equations used in the computer 
code for the gas and particle phases respectively. 

In the derivation leading to Eq.   (A10), we have implied that the 
pressure force acting on the particles Is - e3p/3x, which is different from 
Pal's expression of -3(pe)/3x.    We feel that our approach is more realistic 
for the present problem.    In order to get a better feel for this term let us 
examine in more detail the pressure force acting on the particles and 
compare our approach to Pal's  [A3].    Let us begin by discussing Pal's treat- 
ment of the pressure itself.    In his approach, he assumes that the particle 
density p« is constant  (the particle concentration Op is variable) and that 
the pressure of the mixture p, which he calls total pressure,  Is the true 
pressure of the gas.    He defines  the gas partial pressure, p»,  as the 
pressure of the gas of fixed mass and fixed temperature, if it were to 
occupy the entire volume of the mixture.    If the equation of state of the gas is 

p - p(p,E) (A14) 
then p. is defined by, 

Pg -    (o,E) - p[p(l-c),  E] (A15) 

In addition, If the pressure is a linear function of p(p - pf (E)) 
which is the case for an ideal gas, then pg Is given by 

Pg - (1-c) pf(E) - (l-e)p (A16) 

The total pressure of the mixture Is considered as the sum of the 
partial pressure of the gas, Pg,  and that of the pseudo-fluid of 
particles, pp or 

P - Pg + Pp 
From the above,  it follows that 

Pp - eP 59 
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Note chat  the definition of the partial pressure of the gas, p» 
follows Dalton's law of partial pressure,  I.e.   the partial pressure 
of a component In a mixture Is the pressure that the component would 
exert If It were alone In the container.    However, In reality, 
partial pressure of the particle phase Pp, does not obey Oalton's 
law.   I.e.  If the particles were alone In the container they would 
not produce a pressure. 

Now, we will proceed to discuss the pressure force acting on 
each phase.    In Pal's approach,  the particles are considered to be 
smeared and occupy the complete volume of the mixture, with only 
their partial pressure, p., acting on them.     In our approach, we 
also consider the particles to be smeared; however, we assume that 
they occupy only a portion of the volume having an effective cross- 
sectional area    which Is being acted upon by the total pressure. 

The particle equation of motion as derived by Pal Is of the 
form,   (the following discussion also holds for the gas) 

Du        3p 
a^   i-° + TZT"—» where the right hand side contains no derivatives. 

The pressure gradient term In this equation can be written as    j ^ 
3P which Is different from that in our equation of motion, t r*-. 

In other words, we do not Include the term p — in our equation of 

motion.    We can Justify this by analyzing the following models. 
However, first,  let us review the derivation of the momentum equation 
for a single phase flow with area change. 

uurn^^ 

h    P***. 

7TTTTTTrmn 
*    dx "I 

Figure Al - Control Volume of a Single Phaae Flow 

Considering the control volume shown In Flg.   (Al),  the net pressure 
force,  pn, acting on this control volume Is In the x direction and 
given by 

60 

■"  ■ ■' 



p - + p A + (p + ^ ^) ^ dx-(P + H dx)(A + 
3x 2 ' dx 3x 

dA 
dx 

dx) 

where the second term on the right hand side is the pressure force 
on the side wall. After neglecting terms of second order in dx, 
the above equation becomes 

pn - - A |^ dx. 

Note that there are no first order contributions from the change In 
area dA to the net pressure force; the first order effect of the 

pressure force due to -r- on the right-hand surface is cancelled by 

the pressure force on the side wall. 

For the particles in a two-phase flow we have a similar 
situation (Flg. A2). Let A be the cross-sectional area of the 
mixture, c^ A be the equivalent cross-section area of the particles, 
and €2  ^x ^e the equivalent length of the particles such that 
t1 tz  - e. 

,00° On  o. 
^ 

Figure A2 •- Control Volume for a Particle - 

Gas Two-Phase Flow 

The net pressure force on the particles is then 

Pn - Pel 
A + (p+ fe-r-) -ir*x'(p +1^dx)LeiA + "^2 dxJ 

which after neglecting second order effects becomes 

-.IE A e dx . rn   3x 
Note that in our formulation, we treat the change in e as a change 
in area, resulting in a net pressure force on the particles that does 

not include a term of the form T— 
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The same conclusion may also be reached by considering an extreme 
case, where all of the particles are concentrated in a "rod" of area A e 
and length dx, as shown In Fig. A3. 

I 

I 

.   3(cA) . eA + -J—*- dx 
9x 

Figure A3 - Particle Rod Model 

The net pressure force acting on the "particle rod", p  , is then 

nr - pA. + (p + £4?) ^ dx - (p + |?dx)[Ae + ^dx] 3x 2 ax 3x 3x 

or neglecting second order terns 

p  ■ - r^- Ae dx 
^nr    3x 

Note that the pressure acting on the particle phase in this model acts 
on an area eA, while the pressure acting on the gas phase acts on an area 
(l-e)A. Thus, for the rod model, the pressure force acting on the 
particle and gas phases are respectively - Ae IE. an(j _ A(l-e)-^-. 

ox 3x 
Recognizing that in this model_the interaction force does not contain a 
pressure gradient term (F not F must be used) we have consistency between 
the simple rod model and the complicated continuum model. 

3.  Energy Equations 

Before deriving the energy equations for the gas and particle phases, 
let us review the general energy equation for a control volume. The 
first law of thermodynamics for a control volume which is fixed in space 
(Eulerian approach) is 
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where 

c.v. 
2 

(H + Y)PU dA. 
C . 8 . 

Q.  - rate of heat added to the control volume (energy per 
unit time) 

p . f   - power delivered from medium Inside the control volume to 
the outside, due to rotating mechanical members (work 
per unit time) 

pshear  - power transferred from medium within the control volume to 
adjacent outside medium through shear force. 

Note that the outside medium must be In motion to have power 
delivered; if the outside medium is stationary, the power 
will be zero even though there is force transmitted. 

/      ]dV - the time rate of increase of the internal and kinetic 
c v 

energy of the medium inside the control volume. 

/   [  ]dA - the net enthalpy flux and kinetic energy flux going out 
of the control surface, (work per unit time). 

i 
E ■ internal energy of gas per unit mass of gas 

H ■£ + ■*-■ enthalpy of gas per unit mass of gas. 

The energy equation for the gas phase is then 

oACq-h^) - Fu A + ^ A + ^ [p(l-e)A (E + ^- ) ] + 
u2 

. 2 
+ r2- [pu(l-e)A (E + ^- + ^)] 

3x 2  p 

- »Aci + f -C
£
)^UA<

E
W 

+ T 
+ T 

+ r'+ "WP fA (A17) 
K
p w       p 

where the total dissipation 41 has been broken down into a boundary dissipation 
term *£, and an internal dissipation tern, $£ (see Appendix B) namely: 

♦ ■ tj + tg 
where 

♦B " Fw(uwa - J) " F(up - «) 

The tern E is the internal energy of the combustion products calculated 
at the flame temperature and is not included in q.  Care must be taken 
in supplying the value of q to Insure that E is not Included. In writing 
Eq. (A17), we have assumed that the values of q and E do not include the 
effects of the velocity of the particles and the flow work.  Resulting 

63 



»MiWwsw«' 

U 

from the creation of gas mass, thus these terms are treated separately In 
the 5th term on the right hand side of Eq. (A17).  It is felt that the 
kinetic energy attributed to the velocity of the combustion products as 
they move away from the surface of the burning propellant is included in q 
and need not be isolated.  The sikth term on the right hand side accounts 
for the energy lost by gas passing through the wall.  The last term 
represents the flow work associated with particles leaving through the wall. 

When calculating the work done on the surroundings, it should be 
noted that there is no work done by the wall friction force since the 
wall is stationary; however, the interaction force F (remembering that 
in accordance with the simplified model the interaction force is F and 
not 7) does do work since the gas particle boundary has a velocity equal 
to up.  To clarify this point, let us first consider a viscous fluid 
flowing next to a stationary solid wall (see Flg. (AA)).  The velocity of the 
fluid in contact with the wall must be zero. The velocity increases from 
zero at the wall, through the boundary layer to its "free stream" value of u. 
If our control volume Is taken with the solid wall as a boundary, then the 
shear force Fs does no work on the medium outside the control volume, be- 
cause the boundary of the medium is at zero velocity.  The viscous stress 
in the boundary layer within the control volume will dissipate mechanical 
energy into heat, but this energy transfer is within the control volume and 
does not represent energy transfer across the control volume boundary. If 
the boundary of the control volume is another fluid, then the rate of work 

wa 

Free Stream Velocity - u 

Figure (A4) - Viscous flow next to a wall 
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done by the medium to the outside, r ,   . is Fc ut, Adx, where uu Is the shear     an -D 
velocity of the common boundary of the fluids, not their free stream 
velocities.  If the boundary is a solid moving at a velocity uj,» then the 
rate of work done is also Fs uj, Adx. 

In our present case, the particle phase is "solid", therefore the rate 
of work done by the gas on the particle is F Up Adx and conversely the rate 
of work done by the particles on the gas is -F Up Adx. 

If we now define Q and Qw as the total energy addition terms due to 
burning and energy transfer through the wall, respectively, as 

and 

Q - [qo + a,(E + -7 u* -* )] 
2  p  p 

P 

Qw- (v.Uw(E+lu2 +^2 + ^)] 

(A18) 

(A19) 

and simplify Eq. (A17) by subtracting Eq.(A2) multiplied by (E + u /2) and 
Eq.(AlO) multiplied by u, we arrive at the final version of the energy 
equation for the gas phase, namely: 

Dt  p 3x  o 9x  o 1 ^^w   v    w'    p   I 

- u)«uu - -r " + E) + u) (uu --ru ♦ E) - w  -x-- *—;;—*" T—     (A20) 
p  2 w  w  2 wp p^     A   9x i 

P 

For the current problem,   «tj is assumed to be negligible.    Similarly, 
the particle energy equation can be written as 

aJ** + ^k - - FunA + ^7 tPneA(E    + 7 A]  + r|-[PnGA u  (En ♦ T UJ + f") ] P      P Vp p dtp pZp dXp PP2pPp 

+    u)(E    + ^ u2 + ^A + ü)     (E      + -^ u2    + ^ v2    + —)A p      2p      p wpwp      2wp      2wp      p {A21) 

where we have defined the enthalpy of the particle phase, H , as 

H - E + -2- (A22) 
P   P  Pp 

and the enthalpy of the particles leaving through the wall, H    ,  as 
p "P 

H  - E  + ~ (A23) 
wp   wp  p 

If we now define Q and 0 , the total energy addition terms due to burning 

and energy transfer with the wall, respectively, as 
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and 

P P     P  2 p  pp
/J 

1  2 1 2 
Q  - (o  a  - w  (E  + T u' + T v*" + -—)] 
vp    p vp   wp wp  2 wp  2 wp  P. 

P 

(A24) 

(A25) 

and simplify Eq.(A21) utilizing Eq8.(AA) and (All) we arrive at the 
final version of the energy equation for the particle phase; namely: 

DPE Bu   pu 
_x + -E--_E + 
Dt   p  3x   a 

P       P 

3c 
3x 
— [Q + Q 
Op  P   WP 

+ u  F  + (E 
p wp    p 

u tp u 

2) (" + ^p) 
p M. 

3x ] (A26) 

A simpler form of the particle energy equation, (A26), results If we 
assume that the pressure term in Eqs.(A22) and (A23) may be dropped and 
the flow work associated with the particles phase is accounted for by the 

term E Au -E- .  This is equivalent to dropping the pressure contribution 

in the last two terms of Eq.(A21) and replacing the term J-  (eAu p) with 
3p 9x    P 

eAu T-*-.  The resulting particle energy equation is then 

DPE 
 I 
Dt 

q + q_  + w 
P  vp 

1 2   12 
[(E - E  ) - "Hu - u )  + 7 vZ ] 

wp  p   wp   2 p   wp    2 wpJ 
(A27) 

It should be noted that Eqs. (A26) and (A27) are presented here for the 
purpose of completeness only. They are uncoupled from the rest of our 
system and do not enter into the calculations. 
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Appendix B*.  Derivation of One-Dimensional Tube Flow Equations 

During the course of deriving the two-phase flow equations, some basic 
questions were raised about the approximations involved in the one-dimensional 
representation of fluid flow in a tube.  Most engineering textbooks treat 
the une-dimensional flow problem by applying the conservation laws to the 
one-dimensional tube directly, without relating the resulting equations to 
the three-dimensional field equations.  In this appendix, we shall derive 
the governing equation for one-dimensional, one-phase tube flow, from the 
general three-dimensional field equations, and indicate the approximations 
involved. 

The three-dimensional governing differential equations are (see, for 
example, Refs. Bl and B2.) 

the continuity equation 

I*- + ^(P «t) - 0. (31) 
the momentum equation 

3u      9u 

9r+Uj 3^ 
i + u 

dUi _  1 3p  . „ . 1 dTij (B2) 12_ + 
3xi 

xi 
4 1  3TiJ 

P   ^Xj 

*^ 
* - 1 

P 

^i 
9Xi 

j 
and the energy equation 

M + £^i-Q+i*-iZi (B3) 
Dt  p 3xi 

whereX is the component of force per unit mass due to external sources, 

T,  is the viscous stress tensor, Q is the heat addition per unit mass per 

unit time, q is the heat conduction within the element, and 4> is the 
dissipation function given by 

1     9ui  3U1 \ 
4 - - T   —- + —* I (BA) '  2 TiJ [**        ixj ^H) 

We shall first make the approximation that u- << u., u- << u. and thus the 

only non-vanishing component of velocity is u,.   In a more precise manner, 

we may relax the requirement on U2 and U3 and only require that their integral 
across the area normal to the flow direction be small, namely: 

tt
2   dA   « |i u, dA (B5) 

A U3        IJ  1 

where for convenience we will interchangeably use the notation (x.y.z) 
corresponding to (x-.x-.x ). For simplicity, we shall drop the u» and u. 

terms right from the beginning.  Equations (Bl) to (B3) then reduce to 

* Dr. Alvars Celmlns first proposed the definitions of average quantities 
used in this Appendix and the approximations Involved. 
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ie.+ gJESl , o 
at      ax 

p Dt + 3x    pX   axj 

(•6J 

(B7) 

DE + £iuir     au_ 
Dt      p     3x      x      o   I   xx 3x 

au 
+ T       r— + T xy Jy xr ^]-7^ W 

where the subscript on u has been dropped.    Integrating the continuity 
equation,   (B6)over the cross section of the duct, we have 

[llA(" + 1^)tt] dx - 0 C») 

We nay Interchange the order of the x differentiation on the area 
integration without using a double Integral extension of Leibnitz's rule, 
which Is not readily available, by considering the area Integration as a 
■ingle integration.  Referring to Fig.(Bl) it can be shown that if 

Duct wall 

A(r) 

Figure (Bl) Diagram Showing Cross Section of the Duct 

a parameter r - r(y,z) exists such that 

r(x.y,z.t) - r(x,r,t) 

A - A(r) 
and 

(BIO) 

(BID 

where r is any flow variable (note that for a circular cross section 
r is the radius and A(r) • irr^) 
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then 

If  Ä r " ■ Ml r "* - rlc S <Bl2) 

where C is the boundary of the cross section of the duct.  If r 
vanishes on C, we then have 

II S r "^ ■ ^ II r " (,u> 
A A 

Applying Eq.(B13) to Eq.(B9), assuming that u vanishes on C, we arrive 
at the continuity equation in terms of average properties, namely: 

^(A^) + ^to ü) - 0 (B1A) 

where the average density p and average velocity u are given by 

5 - ± f| p dA (B15) 

■-Mr dA (B16) 

Note that u as defined by Eq.   (B16)  is the "weighted" average, not the 
simple average, u*, given by 

Ü* - i ff u    dA (B17) ill- 
The quantity ü* does not satisfy the continuity equation exactly. 

The momentum equation,   (B7), when combined with (B6) multiplied by u, 
can be written as 

ÜfiHl + ii£ULi + |E . pX + !!ü (B18) 
dt dx 9x 3x. 
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Integrating this equation over the cross section, and applying Eq. (B12), 
we obtain 

h (I <'»""+ & Wy "*+ Ä11/ Ä 

- P, Mk""*l% dA 
The last tern In (B19) may be Integrated as 

ff ^ JJA ^ 
dA - 

3T 
XX 

■II 
A\ 

3 
3x 

dx 

ST    3T \ .^SL + ^cA d 
3y    tz J   J dz 

Txx ^ d' + L(-T« ^ 

(B19) 

+ T   dz) (B20) 

where Green's lemma has been used. The last term of (B20) is the axial 
component of the shear force on the boundary of the cross section, which 
will be designated as F^.  Defining the averages p and X by 

■ -i 11 p dA (B21) 

X.^l^pXdA 

Eq. (B19) can be written as 

+ P, %*\L r~ t  dA 
3x xx -Ä|U 2 dA + ~ito I ) 

(B22) 

(B23) 

3 . -2 
where the term "-^(Ao u ) has been added to both sides of the equation. 

Combining Eq. (B23) with (BIA) and neglecting the last five terns in 
(B23), the one-dimensional momentum equation becomes 
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The approximation  Involved   In deriving  the momentum equation Is  then 

3T 

II, 
11. 

xx 
dx 

dA <<     F 

2 - -2 
(pu )dA - A<3   u « |Aö u I 

i|;*c-f'i"i*H 

(B25) 

(B26) 

(B27) 

The  term F^ Is  the  frlctlonal  force per unit axial length between the 
fluid and  the wall;  it may be measured experimentally,   or estimated. 

The conservation of energy,  in differential equation  form,  after 
neglecting U2 and U3,   is given by Eq.   (B8).     Adding Eq.(B6)  multiplied by 
E to Eq.(B8)  multiplied by s  and integrating over the croas section,  we 

arrive  at 

+ vl7+I«lrHydz (B28> 

The last three terns in Eq.(B28)  represent the viscous dissipation,   4. 
The last two terms will hi simplified according to the following: 

IK if + T     l^dy dz 

■ 1 (Txy U dZ ' Txz u dy) 

- F    u   - F 
V    V w 
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or 

♦ - ♦ + »j (B29) 

where 

B ■ F u  - F u 
w wa   w 

ILL (u - u) + T 
3u 

xx 3x •] dA (B30) 

and u  la the velocity of the fluid at the wall. The first term on 

the right hand side of Eq.(B29), * ,  represents the dissipation of energy 
through wall friction (boundary dissipation). The-term $x represents 
internal dissipation.  The reason for separating the total viscous 
dissipation, <t>, into these two components is to conform to the accepted 
engineering practice of utilizing a wall friction coefficient for one- 
dimensional problems.  It must be realized that the application of a steady 
state friction coefficient tu an unsteady problem may involve substantial 
error. 

If we now make the following definition for average quantities, 

-All 

dA 

K 
(PQ - ^)dA 

and neglect certain terms, which involve the following approximations, 

(B31) 

(B32) 

jl    pEudA-pEÜA|   «   |pEuA| (B33) 

11 pu dA - p uA << IP 3^1 (B34) 

11 u|2.dA-ü|£A 3x 3x 
<< »^l (B35) 

Equation (B28)    reduces to 

ilALll + Hal Ü? . pAQ . A; iü + F (u 
w   w - S) + ij (B36) 
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Combining (B36) with (B14) and, (B2A) multiplied by u, we obtain. 

£(*4y--k£<** + Xu + Q + F    u/Ap+-r- 
w    w Ap 

(337) 

If  the dissipation function i had not been separated as In F.q.(B29), 
Equation   (B37)  would  then become 

(B38) 

■ 

Under certain situations $    in Eq.(B37)  may be neglected.     It is 
realized that $ must at all times be positive and if  the problem is such 
that  either *B or %r are negative this assumption must be reexamined. 
For all practical problems,   (uy    - ü)  and Fw are opposite in sign,  therefore, 
the  term $3 is positive.    Within the boundary layer where dx^y/^y and 
nTxz/3z are large and positive,   the term  (u - u)   is also positive,  therefore, 

l"!  is also positive. 

The one-dimensional equations are,   in general,  good for flows of close 
to uniform velocity distribution.     The viscous  force is then negligible ex- 
cept near the solid wall, where a thin layer of boundary conditions exist. 
This boundary layer is responsible for the wall friction term Fw. 

A typical set of one-dimensional tube  flow equations may be  found in 
Ref.   (B3). 
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APPENDIX C - COMPUTER CODE 

Tliis  appendix contains a  omplete description ot   the computer 
code TWOFLO  including input and output  information.     A brief  explana- 
tion of  the  function of each subroutine used in  the code is  presented 
along with instructions  for altering the user specified routines. 
Tlie nomenclature used in the actual code is, wherever possible,  con- 
sistent with  this report limited only by the fact  that Greek symbols 
and  lower case letters are not available in Fortran TV the code 
language.     TWOFLO is written to accept any consistent set of  units or 
can be  run nondlmensionally. 

1.     Description of Fortran Variables 

The  following is a  list of  the major FORTRAN variables  used  in 
the  TWOFLO code.     Those variables  followed by a dash,  e.g.   UP-,   are 
suffixed with several different qualifying symbols,  point numbers, 
point  letters,  variables of differentiation,  and so  forth.     For an 
explanation of  these symbols,  see  3 below. 

1.   Flow variables 

CG- - c 
EG- • •  E 
EP- - ED 
ES- • •  f; 

PG- - p 
RG- • •  P 
RP- • 1  »D 
TG- ="  T 
UG- ■ ■ u 

UP- =  up 
XX- - x 

eoua variabl 

GC- • • GC 
GM- • ■ GM 
GE- ■ •  GE 
PC- ■ ■ PC 
FM- • • PM 
PE- • ■ PE 
F-  • ■ F 

FWG- • ■ Fw 
FWP- • • fwp 
QG- • ■ Q 
QP- • ' % 

QWG- ■ • QJ 
QWP- ■ ' Qwp 
W-  > •  Ü) 

WWG- • •  Up 
WWP- • • ^wp 
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DTT- ■ At 
Dt- = At 
DX-       =     Ax 

3.   Suffixes  - suffixes are used to describe 

a. mesh points.   I.e.   SP(K,I) where 
K - time line (1,2) 
I ■ point number 

b. a particular point In the Iteration scheme i.e. SP1, SPA, 
etc. where 1 and A are point designations. 

c. derivatives, i.e. SPX-, SPT- and GEUG- 

SPX- -  3ap/3x 

SPT- -  öüp/at 

GESP- -  3GE/8op 

(suffixes X and T represent x and t respectively) 

II. Description of subroutines * 

1.  ABC(L,K1,K2,K3,I1,I2,I3,M1,M2,M3,J2,IC,ID,NNW1,NNW2,TT1,TT2, 
TT3,TTT,NXT) 

This subroutine is designed to Interpolate for the proper- 
ties at the base of the characteristics when only the gas phase is 
present. When quadratic Interpolation is required, a Lagrange inter- 
polating polynomial of order two Is used: namely 

y(x) 
(x-x«)(x-x-) 

(x1-x2)(x1-x3) yi* 

(x-x.) (X-Xj) 

(x2-x1)(x2-x3) 

(x-x1)(x-x2) 

(x3-x1)(x3-x2) 3' 

where y(x) is the particular property to be calculated, and y., y2 
and y. are the values of that property at the mesh points. 

The terms in the call list are 

Kl - 1 calculate properties at points A,B and C 
- 2     ....    M polnt A 

.3 " " " " B 

- 4 " " " points A and C 
- 5 " " " " B and C 
- 6 " " " point C 

* Note: For all subroutines, L ■ 1 Indicates that the point is located 
behind the bullet; L - 2 indicates that point is located In 
front of the bullet. 
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K2 = 1 C properties are assigned to be the same as point (M1,IC) 
K2 ^ 1 C properties are Interpolated 
K3 = 1 C properties are not calculated (used after first 

Iteration when K2 - 1) 

11,12,13 ■ point numbers 
M],M2,M3 ■ line number of points 11,12,13 respectively. (1 old time 

line 2 new time line ) 

J2 " 1 quadratic Interpolation is used between points 11,12 and 13 
J2 - 2 linear Interpolation Is used between points 11 and 12. 
1C ■  (K2-1)IC Is the point number of the mesh point correspond- 

ing to point C. 
ID =  not used 

NNW1 -   "  " 
NNW2 ■   "  " 

TT1,TT2,TT3 » times associated with points 11,12, and 13 respectively 
If Interpolation is with respect to time instead of 
position. 

TTT - not used 
NXT ■ 1 Interpolation along a constant time line using 

position 
- 2 Interpolation using time 

2.  ABCD(L,K1,K2,K3,I1,I2,I3,M1,M2,M3,J2,IC,ID,NNW1,NNW2, 
TT1,TT2,TT3,TTT,NXT) 

This subroutine Is quite similar to ABC except here the 
properties of both phases are calculated.  The terms in the call list 
which are different from ABC are 

Kl «    1   Ci UCUlJ ite propertl es at points A,B,C ai id  D 
-  2 ii A,C and D 
-  3 ii B,C and D 
-  4 point A 
-  5 it B 
- 6 II B 
-  7 •i D 
-  8 II C 
- 9 II C 

20 do no calculating j ust print A,B,C and D properties 

K2 - 1,4,5 properties at point C correspond to properties at 
point (Ml.IC) 

2,3  properties at point D correspond to properties at 
point (Ml,ID) 

ID -  the point number of the mesh point corresponding to 
point D if K2 - 2 or 3. 

3. ADISC(L,ID,K1,K2,K3,K4,K5) 

This  routine has  two purposes:     it handles discontinuities  in 
cross-sectional area, A(x)   ,  and is used also,   either in conjunction 
with  INRTBN or simply by itself,   to handle  the gas-particle interface, 
when that Interface is  treated as a discontinuity in gas concentration 
(cO.     Both of  these purposes are acrompllshed with much  the same 
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computational procedure.  There are two main differences, however. 
The first Is that, In the case of the gas-particle Interface, no 
particle properties are calculated In front of the discontinuity, 
since no particles are present there; the second is that, in the 
case of the gas-particle Interface, the u-c characteristic may inter- 
sect with the path of the bullet, and If it does, the properties at 
the base of that characteristic must be obtained by Interpolation 
along the bullet path. 

The terms in the call list are: 

ID - point number of the point on the left hand side of the 
area discontinuity 

Kl ■ 0 normal Area Discontinuity 
■ 1 Gas-particle Interface 

K2 -   not used 
K3 = 
K4 - 
K5 = 

It ii 

n ii 

it II 

4. ADT(C1,C2,C3,U1,U2,U3,X1,X2,X3,UP1,UP2,UP3,K1,K2,KK3) 

This subroutine calculates the At associated with each point, 

The derivation is as follows: 

X 
1 2 3 

Figure Bl. Plot of characteristic grid used to calculate At. 

Referring to Fig.(Bl), we first calculate At (DTI) 
associated with the (u+c) characteristic direction by writing 

VX1  (u4+cA) + (ul+Cl) 

DTI 

Vx2 K V
u2 

DTI =  2 

Rewritten, these equations are 

x. x1 + DTI • - (u4 + c4 + ^ -H Cj) 

x4 - x2 + DTI ' 2 ("4 + V 
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Subtracting these two equations, we obtain 

0 - (x1-x2) + DTI • I (cA ■»■ Cj + u1 - u2) 

If we now assume that c. • c„. we have 

2(x, - x.) 
DTI  A~-     l 

C2 + Cl + Ul ' U2 
A similar argument leads to At(DT3) associated with the (u-c) 
characteristic, namely: 

2(x- - x ) 
DT3 » s  

U3 " U2 ■ C2 " C3 

Hie terms  in the call list are 

C1,C2,C3, • CG at points 1,2  and 3 respectivelv 
01,02,03 - UG      "      " 
X1,X2,X3 - XX      "      " 

UP1,UP2,UP3 - UP 

Kl -  1    interior point 
2 interface between gas and two-phase region 
3 area discontinuity 

K2 ■ 1 smallest value of At resulting from u+c and u-c 
is chosen 

2 At resulting from u+c is chosen 
3 "        u-c "  " 

KK3 ■   not used. 

5. AIN(IFILE,IA,KKl,KK2,KK3,KK4) 

This subroutine is used to read in data from a dump tape. 

The terms in the call list are 

IFILE - number of the file from which data is read. 
1A - data is assigned to mesh point (IA,  ). 

KK1 - not used 
2 - "  " 
3 - '•  " 
4 - "  " 

6. A0UT(IFILE,IA,KK1,KK2,KK3,KK4) 

This subroutine is the same as AIN except that it dumps data on 
IFILE 
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7.   AR(XX,Z1,Z2)       USER SPECIFIED 

This   function subroutine calculates  the cross-sectional area 
of  the duct,  A,  given the x location. 

8. ARX(XX,Z1,Z2)       USER SPECIFIED 

This  function subroutine calculates  3A/3x    given x. 

9. BNPTG(L,I1,I2,I3,MAXIT,J1,J2,J3,J4) 

This subroutine calculates the gas phase properties at boundary 
points using one phase equations 

The terms In the call list are: 

11,12,13 ■ base mesh points  (point being calculated Is II 
if Jl - 1 or 13 if Jl - 2) 

MAXIT ■ maximum number of iterations 
Jl ■ 1 left boundary 

2 right boundary 

J2 ■ 1 specify velocity on the boundary 
2     "  pressure 

J3 ■ 1 normal boundary 
- 2,3,4 special boundary points 

J4 ■ 1 J2"l the bullet momentum equation is used 
2 J2-1 the velocity (bullet) Is zero. 
3 boundary conditions are determined prior to 

entering BNPTG(not In GBCOND) 

10. BNSH(L,K1,J4,MAXIT, JJ1,JJ2,J.J3) 

This subroutine controls   the calculation of a shock reflecting 
from a boundary 

The  terms In the call  list are 

Kl ■    shock number 
J4 a    1 bullet  Is  moving 

2 bullet Is stationary 
MAXIT ■    maximum number of  iterations 

JJ1 ■ not used 
JJ2 
JJ3 

i>       ti 

if       ti 
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11.     C0MEQ1(L,M,K1,K2,K3,Z1,Z2,Z3; 

Using the compatibility equation along the characteristic 
direction dx/dt - Up,  Eq.(50),this routine solves for u- at point 4, 
given values of the other material properties. 

The terns in the call list are: 

M - 1 
Kl - I 
Zl - not used 
Z2 - ii  ii 

Z3 - it  n 

12.  C0MEQ2(L,M,K1,K2,K3,Z1,Z2,Z3) 

This subroutine uses the particle energy equation, Eq.(52) written in 
finite-difference form to solve for Ep at point 4, given values of the 
other material properties. 

Note: This routine is not used, because the particle energy 
equation is uncoupled from the rest of the system. 

13.  COMEQ3(LtM,Kl,K2,K3,N2,Z2,Z3) 

This subprogram calculates Op at point 4 given values of the 
other material properties at point 4.    The particle continuity equation 
Eq.(51), written in finite-difference form,  is used. 

The terms in the call list are: 

M - 1 
Kl - 1 
K2 - not used 
K3 - J2 in GNPT 
N2 - number of point 
Zl - pot used 
Z2 - II  II 

being calculated  (point 4) 

14.     C0MEQ4(L.M,K1,K2,K3,Z1,Z2,Z3) 

This routine uses  the compatibility equation along the direction 
dx/dt - u, Eq. (47). 

The terms in the call list are: 

M -  1 two phase compatability equations  is used 
2,3 gas phase " " "    " 

Kl - 1 equation (47)  is solved for EG4 
2 " (47)  "        " "      " 

and  (3E/3o].  and  [8E/aul,       (see NEWTON) 
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K2 - not used 
K3 - 1 PM4,PC4,GCA,(;E4 are recalculated 

2  '  " are not recalculated 
ZI - not used 
Z2 - it  ii 

Z3 - n  H 

15. C0MEQ5(L,M,K1,K2,K3,Z1,Z2,Z3) 

This subroutine solves the compatibility equation along the 
direction dx/dt - u + c, Eq.(48). 

The terms in the call list are: 

M - 1,3 
M - 2 

Kl 1 

2 

K2 - 1 
2 

K3 - 
Zl - 
Z2 - 
Z3 ■ 

two phase compatability equation is used 
gas   "     " "    "  " 

equation is solved for either SG4 or UG4 
(see K2) 
equation is put into the form g(a,u)  - 0 
and the derivatives 3g/9a and 3g/3u are 
calculated  (see NEWTON) 
solve for SG4(M-1,3)  or RG4(M-2) 
solve for UG4 

S.A.  C0MEQ4 
not used 

II 

ti 

16.     C0MEQ6(L,M,K1,K2,K3,Z1,Z2,Z3) 

This subroutine solves the compatibility equation along the 
direction dx/dt ■ u - c, Eq.(49). 

The terms in the call list are: 

M 

Kl 

1,2 
3 

1 

2 

K2 - 1 
2 

K3 - 

Zl - 
Z2 - 
Z3 - 

two phase compatability equation is used 
gas phase    "        ''    "  " 

equation is solved for either SG4, RG4 or 
UG4 (see K2) 
equation Is put In the form f (a,u) ■ 0 and 
the derivatives 3f/9a and 3f/9u are calculated. 
solve for SG4(M-1,2) or RG4(M-3) 
solve for UG4 

S.A. C0MEQ4 

not used 
II  it 

17.      C0MEQ7(L,M,K1,K2,Z1,Z2,Z3) 

This routine calculates the regression distance (Z). 

L is the only term in the call list that Is used 
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18. C0MEQ8(L,M,K1,K2,K3,Z1,Z2,Z3) 

This subroutine calculates field properties when UG4 and UP4 
are zero and all base point properties are Identical. 

L is the only term in the call list that is used. 

19. CSQ(L,M,K1,K2,RH,E,C,P,PE,PR,T,XA,XB) 

This subroutine calculates  the sound speed of the gas 

The terns in the call list are: 

M 
M 

Kl 
K2 
RH 

E 
C 
P 

PE 
PR 

T 
XA 
XB 

P 
E 
c 
P 
3p/3E 
3p/9p 
T 

RH and E must be input 
P,  RH, PE, PR must be input 

not used 
ii      n 

not used 
II      H 

20.    DIFF(L,N,M,K2,K3,Z1,Z2,Z3) 

This subroutine uses forward, backward and central difference 
schemes to calculate the terns 3up/3x and 3ap/3x.    Then the particle 
continuity and momentum equations are used to calculate the terms 
3ap/3t and 3up/3t respectively. 

The terns in the call list are: 

N 
M 

K2 

K3 
Zl 
Z2 
Z3 

1 
2 
3 
4 

M 

point number 
line number 
central difference is used 
backward difference is used 
forward    "     "  " 
x derivatives are calculated externally thus only t 
derivatives are calculated. 

not used 
not used 
not used 

83 



21. DIMEN(L,K1,K2,K3,KA,K5) 

This subroutine nondlmenslonallzes all variables used In the 
program using B(l,20), B(l,21), 8(1,22) as nondimensionallzlng factors. 

The terms In the call are: 

Kl > 1    nondlmenslonallze B properties 
2 nondlmenslonallze points K4 to K5 on the K3 

time line. 
3 dlmenslonallze 

K2 ■ not used 
K3 - time line number 
K4 - first point to be treated 
K5 - last   "  " "   " 

22. DROP(IDR) 

This subroutine drops  the IDR point from the 1 time line 

23. DRVX(L,N1,N2,N3,K1,K2,K3,Z1,Z2,Z3) 

This subroutine contains both 2 and 3 point forward and back- 
ward and central difference schemes. 

The terms In the call list are: 

N1,N2,N3 - points  to be used In differencing scheme 

Kl ■ 1    calculates derivatives of a. 
2 

K2 - 1 
2 
3 

K3 - 

Zl - 
Z2 - 
Z3 - 

ti 

it 

forward difference 
central 
backward 

line number 

not used 
ii      it 

Up 

24.     DTQ(L,ID1,ID2,ID3,DTT) 

This subroutine calculates At for each point on the time line. 
The smallest value after being reduced by a factor (0.9) becomes the 
At for the next time line calculation 

The terms In the call list are: 

ID1 - not used 
ID2 - II      n 

ID3 - II      II 

DTT - At 
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25.  DZDT(SG,SP,EG,EP,UG,UPfPG,PP,RG,RP,TG,TP,ES,XX,DT,TT, 
K1,K2,K3,Z1,Z2,L) USER SPECIFIED 

This function subroutine Is used to calculate the regression 
rate, DpZ/Dt. 

The only requirement In the call list Is that the variables 
used In the equation for the regression rate be available. 

26.  ERH(L,IQ,EI,PI,RHI,PMEES,PMRS,XA,TI) 

This subroutine uses the equation of state to calculate p 
or E.  The Newton Raphson technique Is used except for an Ideal gas. 

The terms In the call list are: 

IQ - 1 
2 

calculate p given E and p 
E      "      p    "    p 

El - E 
PI - p 

RHI - p 
PMEES -  3p/9E 

PMRS -  3p/9p 
XA ■    not used 
TI - T 

27. FQ(SG,SP,EG,EP„UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT 
K1,K2,K3,Z1,Z2,L)    USER SPECIFIED 

This subroutine calculates the drag force,  F,  between the 
particles and the gas. 

The only requirement In the call list Is that the variables 
used In the equation for the drag force be available. 

28. FRET(L,K1,K2,FRW,FTW,FEW,TM,RW,EW,XA,XB) USER SPECIFIED 

This subroutine computes the derivatives of f(p,E,T) with 
respect to p, E and T. 

The terms In the call list are: 

Kl • • not used 
K2 - • 1 Virlal equation of state. 

■ < 2 Van der Waal equation of state. 
K3 - not used 
FRW ■ •  3f/3p 
FTW • 3f/3T 
FEW » 3f/3E 
TW - T 
RW ■ P 
EW - E 
XA ■ not used 
XB - not used 
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29.     FWGQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT 
K1,K2,K3,Z1,Z2,L)   USER SPECIFIED 

This subroutine calculates  the wall friction force acting on 
the gas, Fwg. 

The only requirement In the call list other than Kl Is that 
the variables used In the equation for the wall friction force, 
Fw_, be available. 

Kl ■ 1 calculate FWg 
- 2 calculate FWg, 3FWg/3u and 9FWg/8p 

30. FWPQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT 
K1,K2,K3,Z1,Z2,L) USER SPECIFIED 

This subroutine Is the same as FWGQ except that It calculates 
the wall friction force acting on the particles,F 

31. GBC0ND(L,M1,M2,K3,KA,XA,XB,PGG,UGG) 

The subroutine Is used to supply gas boundary conditions. 

The terms In the call list are: 

Ml ■ 1 left boundary 
2 right boundary 

M2 • 1 velocity Is specified on the boundary 
pressure 

K3 ■ point number of the boundary point 
K4 ■ 2 bullet has not moved and u • 0. 
XA » not used 
XB ■ not used 

PGG - pressure 
UGG - velocity 

32. GC(SG,SP,UG,UP,EG,EP,RG,RP,CG,PG,PP,TG,TP,ES,F,FWG,FWP 
W,WWG,WWP,QG,QP,QWG,QWP,AR,ARX,Z1,Z2,L) 

This subroutine calculates the right hand side of the gas 
continuity equation,  GC. 

The only requirement In the call list other than Zl is that the 
variables used in the equation for GC be available,   (the variables 
F,FWG QWP are values generated by subroutines rQ,FWGQ  
QWPQ respectively and AR and ARX are A and 3A/3x respectively) 

Zl - 1    calculate GC 
- 2 " GC,   3GC/au and 3GC/3o 

33.     GE(SG,SP,UG,UP,EG,EP,RG,RP,CG,PC,PP,TG,TP,ES,F,FWG,FWP 
W,WWG,WWP,QG.QP,QWG,QWP,AR,ARX,Z1,Z2,L) 

This subroutine is the same as GC except that the right hand 
side of the gas energy equation,  GE,  is calculated. 
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34. GM(SG,SP,UG,UP,EG,EP,RG,RP,CG,PG,PP,TG,TP,ES,F,FWG,FWP, 
W,WWG,WWP,QG,QP,QWG,QWP,AR,ARX,Z1,Z2,L) 

This subroutine Is the same as GC except that the right hand 
side of the gas momentum equation,  GM,  is calculated. 

35. GNPT(L,I1,I2,I3,HAXIT,J1,J2,J3,J4) 

This subroutine calculates the properties of mesh points In 
the two-phase region. 

The terms In the call list are: 

11,12,13 « point numbers 
MAXIT   - maximum number of iterations 

Jl " 1  base properties at points A,B,C and D 
are calculated internally. 

" 2  base properties at points A,C and D are 
calculated internally. The  B properties 
are calculated externally. 

- 3  base properties at points B,C and D are 
calculated internally. The A properties 
are calculated externally. 

* 4  base properties at points A,B,C and D 
are calculated externally. 

J2 • 1  normal (interior) point is calculated. 
• 2  point 4 is located using Up. The gas 

compatability equation is used along dx/dt 
• u + c. 

- 3  point 4 is located using up.  The gas 
compatability equation is used along 
dx/dt ■ u - c. 

» 4  two phase left boundary is calculated. 
- 5  two phase right boundary is calculated. 
- 6  point in front of right traveling shock 

is calculated. 
- 7  point in front of left traveling shock 

is calculated. 
J3 - 1  normal general point 

2  initial calculation where interface and 
bullet boundary are calculated simultaneously. 

- 3  area discontinuity point. 
J4 -    not used. 
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36. GNPTG(L,I1,K2,K3,MAXIT,J1,J2,J3,JA) 

This subroutine calculates the properties of mesh points In 
the gas only region. 

The terns In the call list are: 

11,12,13 ■ point numbers 
MAXIT   - maximum number of Iterations 

Jl ■ not used 
J2 ■ 1 normal  (Interior) point Is calculated. 

■ 2,3,4,5 not used 
■ 6 point In front of right traveling shock Is 

calculated. 
■ 7 point In front of left traveling shock Is 

calculated. 

J3 ■ not used 
J4 - "  " 

37. GUESS(L.Kl,12,J2,J3,M,JJ5,JJ6) 

This subroutine supplies the first guess for the Iterations In 
BNPTG,GNPT and GNPTG. 

The terms In the call list arc: 

Kl - 1 
- 2 

12 - 

first guess for BNPTG and GNPTG 
M   ii    ii GNPT 

point number of properties used as a 
first guess. 

J2 - 1,3    (Kl-2) first guess is the point (M,I2) 
2,4  10 (Kl-2) first guess is solution of 

linearized two phase equations 
- 6,7    (Kl-1) first guess is the point (M,I2) 
- 1,2,3,4, (Kl-1) first guess is a solution of 

5,8,9,10 linearized gas phase equations. 

J3 - not used 

M - 

JJ5 - 
JJ6 - 

line number of properties used as a 
first guess, 
not used, 
not used. 

INDISCa.ID) 38. 

This subroutine calculates the complicated singularity that occurs 
when an area discontinuity exists at the initial bullet location. 

The terms in the call list are: 

ID - point number of the left point at the area discontinuity, 

■: 
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39.  INIT(L,IP,XB,XC,XD) 

This subroutine reads In and prints out all initial data. 

The terms in the call list are: 

IP - 0 read in and print out initial data 
* 1 only print out B(     ) array. 

2 only print out initial time line 
XB • not used 
XC - 
XD - 

it  H 

it  ii 

40. INRTBN(L,M,K1,K2,K3,I1,I2,I3,J1,J2,J3,MAXIT) 

This subroutine calculates  the gas-particle interface and the 
bullet boundary simultaneously. It is used until a mesh point is 
inserted between the two. 

None of the terms in the call list are currently used. 

41. INTPRN(L,TU,TL,TP,ZZ1,ZZ2,ZZ3,ZZA) 

This subroutine interpolates for and prints out the properties 
at a time line lying between two calculated time lines. 

The terms in the call list are: 

TU time of upper time line 
TL II ti lower II II 

IP it it interp olated time line 
ZZ1 not used 
ZZ2 II II 

ZZ3 it II 

ZZ4 M II 

42.  INTSEC(Xl,Ul,CltTl,X2,U2,C2,T2,X4,U4,C4,T4,N,XB,UB,CB,TB) 

This subroutine calculates the x and t location of the point of 
intersection B, of the line connecting points 1 and 2 and a 
characteristic emanating from point 4. 

The terms in the call list are: 

X_ - x location of point __ 
U__ - gas velocity of point_ 
C_ - sound speed of point_ 
T_ ■ time of point_ 

N  - 1 characteristic emanating from point 4 is dx/dt - u + c 
2 " "        dx/dt - u - c 
3 " "     "   "  " " dx/dt - u(u>0) 

4 " "     "  ,  dx/dt - u(u<0) 



i 

43. LIMPNO(Y) 

This subroutine drops mesh points, one-by-one, until the number 
of points remaining Is equal to MAXPT or MAXPTB.  Each mesh point 
dropped by LIMPNO lies In the region of smallest change In "Y" 
(with respect to x) where Y Is specified In the call statement and 
can be any one of the flow variables.  This helps to Insure that a 
comparatively fine mesh exists In regions of large change, and 
that a somewhat larger mesh exists In regions of small change. 

44. LINAB(L,K1,K2,K3,I1,I2,J1,J2,XP,TP) 

This subroutine uses linear Interpolation to calculate 
gas properties at points A or B. 

The terms In the call list are: 

Kl - 1 calculate A properties 
2     "    B    " 

K2 - 1 Input coordinates of end points (11,Jl) and (12,J2) 

■ 2 input end point properties through common 
blocks LIN1,LIN2,LIN3 

K3 - 1 interpolate using position, x. 
2      "    "   time, t. 

11,12 -   line numbers 
J1,J2 •   point numbers 

XP -   x location of point A or B 
IP -   time of point A or B 

45. L0CABC(K1,I1,I2,I3) 

This subroutine calculates the x location of points 
A,B,C and D. 

The terms in the call list are: 

Kl - 1 point C corresponds to point (1,12) 
■ 9  *>  n    "     '•   •'     " 

11 -  not used 
12 -  point number 
13 -  not used 
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46. NEWTON(L,M,K1,K2,K3,K4,ZI,Z2fZ3,Z4) 

Tills subroutine uses Newton Raphson techniques to solve com- 
patibility equations along characteilstics dx/dt ■ u, u + c 

The terns In the call list are: 

M - 1 two phase compatibility equations are used 
■ 2 gas  "       "       equation is used alone 

(dx/dt - u + c 
3 "   "       " "    is used alone 

(dx/dt ■ u - c 
Kl ■  not used 
K2 ■  not used 
K3 - 1 GC,GM,GE,PC and PM are held constant during Iteration 

2 GC,GM,GE,PC and PM vary during iteration 
K4 - J2 in GNPT-used to determine the type of point being 

calculated 

Zl - not used 
Z2 - ii II 

Z3 - ii II 

Z4 - II n 

47.  N,rROPYa,IQ,RG,EG,SS>JJl,JJ2,JJ3)  USER SPECIFIED 

This subroutine is user specified.  It's function is to 
calculate either the entropy, SS, density, RG, or specific internal 
energy, EG of the gas phase given the other two. 

The terms in the call list are: 

IQ - 1 calculate entropy 
- 2   "     density 
- 3   "     specific internal energy 

SS - entropy 
JJ1 - not used 
JJ2 - II  it 

JJ3 - II  II 

48.  PC(SG,SP,UG,UP,EG,EP,RG,RP,CG,PG,PP,TG,TP,ES,F,FWG,FWP, 
W,WWG,WWP,QG,QP,QWG,QWF,AR,ARX,Z1,Z2,L) 

This subroutine calculates the right hand side of the 
particle continuity equation, PC. 

The only requirement on the term« in the call list is that 
all variables used in PC be available. 
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49. FJV(NLINE,K1,P4,PA,PB,PÜXA,PD,XB,PDTA,PDTB) 

This subroutine calculates o      ,  o      ,   u        or u        at point 4. 
p,x  p,z  p,x    p,t 

P4, PA and PB are the values at points 4, A and B of the variable to 
be differentiated.  "DXA PDXB PDTA and PDTB are the values of the 
derivatives of the said variable at Points A and B. 

The terms in the call list are: 

NLINE - not used 
Kl - 1 calculate x derivatives 

- 2   "    t    •' 

50. PE(SGtSP,UG,UP,EG,EP,RG,RP,CG,PG,PP,TG,TP,ES,F,FWG,FWP, 
W,WWG,WWP,QG,QP,QWG,QWP,AR,ARX,Z1,Z2,L) 

This subroutine calculates the right hand tide of the particle 
enegry equation, PE. 

The only requirement on the terms in the call list is that 
all variables used in PE be available. 

51. PLOTTO(IT) 

This subroutine is used for plotting purposes only. 

52. PM(SG,SP,UG,UP,EG,EP,RG,RP,CGtPG,PP,TG,TP,ES,F,FWG,FWP, 
W,WWG,WWP,QG,QP,QWG,QWP,AR,ARX,Zl,Z2fL) 

This subroutine calculates the right hand side of the particle 
momentum equation, PM. 

The only requirement on the terms in the call list is that 
all variables used in PM  be available. 

53. PPTX)T(X,y,NP,NPLOT) 

This subroutine is used for plotting purposes only. 

54. PRINTO(L,K1,K2,K3,K4,K5,KK6,KK7,KK8,KK9.KK10) 

This subroutine controls the printout of calculated data. 

The terms in the call list are: 

Kl 
K2 
K3 
K4 
K5 

KK6 
KK7 
KK8 
KK9 
KK10 

number of first point to be printed 
II      II   1«ot     "      "   ••    " 

increment by which points are printed (usually 1) 
number of line to be printed (either 1 or 2) 

1 print gas properties only 
2 print two phase properties 

not used 
n      ii 

•i 

n 

H 

II 

II 

n 
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55. PTARNG(MSR,L) 

The subroutine controls the adding ana dropping of points 
to maintain a specified time Increment. 

The terms In the call list are: 

MSR - 1 always 

56. PTQ(L,Kl,K2,K3,RT,TT,PT,PTTfPTR,XA,XB) USFR SPECIFIED 

This subroutine calculates p, 3p/3T and dp/^p 

The terms In the call list are: 

Kl ■■-      not used 

K2 - 1 Vlrlal equation of state 
2 Van der W 1 equation of state 
3 Ideal gas     " 

K3 *  not used 
Rt - P 
TT - T 
FT - p 

PTT -  3p/8T 
PTR -  3p/3p 
XA ■  not used 
Xb ■  not used 

57. QET(L,K1,K2.RT,TT,ET,XA,XB,XC) USER SPECIFIED 

This subroutine uses the equation f(p,E,T) * 0 to calculate 
T given p and E or to calculate E given p and T 

The terms in the call list are: 

Kl • • 1 calculate T 
■ ■ 2      "              p 

K2 ■ • 1 Virial equation of state is used 
■ • 2 Van der Waal equation of state is used 

RT • • P 
TT • . T 
ET • • E 
XA • •      not used 
XB • ,        ii      ii 

xc • ,        II      II 

58.  QGQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DB,TT, 
KltK2tK3,Z,L) 

This subroutine calculates the rate at which total energy is 
released during burning of the propellent Q. 

The only requirement on the terms in the call list is that 
all variables used in Q be available. 
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59. QPQ(SGtSP,EG,EP,UG,UP,PG,PP,RG,RPtTG,TP,ES,XX,DT,TT, 
K1,K2>K3,ZZ>Z2,L) 

This subroutine calculates the rate at which the particles 
lose energy during burning Qp. 

The only requirement on the terms In the call list Is that 
all variables used in Q be available. 

60. QUAD(Yl,Y2fY3,XP) 

This subroutine uses quadratic Interpolations to calculate 
the Y property at location XP givea Y at points XXI,XX2 and XX3 
(I.e., Y1,Y2,Y3 respectively) 

61. QWGQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XXtDT,TT, 
K1,K2,K3,CG,Z3,CG,Z2,L) 

This subroutine calculates the total energy lost by the gas 
phase due to gas passing through the wall, Qw . 

The only requirements on the terms in the call list is that 
all variables used in 0  be available. 

62. QWPQ(SG,SP,EG,EP,ÜC,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT, 
Kl,K2,K3.Zl.Z2tL) 

The subroutine calculates the total energy lost by the particle 
phase due to particles passing through the wall, Q. 

The only requirements on the terms In the call list Is that 
all variables used in Q  be available. 

63. RHSGAS(L,Kl,K2,RG,EG,PG,TG,CGfUG,XX,TT,DT,XA,XB,Rl, 
R2,R3) 

This subroutine calculates the right hand side of the gas 
continuity (Rl), momentum (R2) and energy (R3), and their 
derivatives with respect to p and u. 

The only requirement on the terns in the call list other 
than the variables used in Rl, R2 and R3 

Kl - 1 calculate R1.R2, and R3 
2    "   " ", R3 and their derivative«. 

64. SHKFRT(LfKl,K2,KK3,MAXIT,JJl,JJ2,JJ3) 

This subroutine controls the calculation of properties in 
fron of and behind a shock wave. 

The terms in the call list are: 
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Kl 
K2 

KK3 
MAXIT 

JJ1 
JJ2 
JJ3 

number of the shock 
0 normal shock front 
1 SHKFRT called from BNSH with special  treatment of 

A and B properties 
2 not used 
3 SHKFRT called from BNSH for initial first ,uess 
not used 
maximum number of iterations 
not used 

65.     SHKIN(L,NR1L2,N2,M2,W,X,Y,Z) 

This subroutine controls the initiation of a shock wave. 

The terms in the call list are: 

NR1L2 - 1 right traveling shock wave 
- 2 left 

N2 -  the point number of the point behind the 
inserted shock wave 

M2 •  the point number of the first mesh point 
in front of the shock. 
not used 

ti  ii 

W - 
X - 
Y - 
Z - 

II 

II 

66. SHKINT(L,K1,MAXIT,KK1,KK2,KK3,KK4) 

This subroutine controls the calculation of a shock wave 
interacting with a gas-particle interface. 

The terms in the call list are: 

Kl - number of the shock wave 
MAXIT ■ maximum number of iterations 

67. SHOKEQ(L,MS,MQ) 

This subroutine solves the Rankin-Hugoniot shock relations 
for the properties behind a shock wave given either u, p or the 
shock velocity, U. 

The terms in the call list are: 
MS - 1 right traveling shock 

2 left 
MQ • 1 specify p beuind the shock 

2 n n     II    II 

3 "   the shock velocity, V. 
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68. SHTR(L,J,MM,I) 

This subroutine controls  the calculation of properties across 
a shock  (currently not In use) 

The terms In the call list are: 

J - shock number 
MM - 1 right traveling shock 

2 left 
I - point number behind the shock 

69. SMQ(L,ISM,RW,EW,PW,PRW,PEW,NA,NB,XA,AB,IW) 

This subroutine calculates the pressure PW, temperature TV 
and the derivatives of pressure with respect to density, RW and 
energy, EW, given density and energy. 

The terms in the call list are: 

ISM - 1 calculate p 
2 calculate p and 9p/3p 
3 calculate p, dp/3p KXi  öp/9E 
4 calculate p and 3p/3E 

70. SPPT(L,KK1,K2,KK3,PG,TG,RG,EG,XX1,XX2,XX3) USER SPECIFIED 

This subroutine calculates C tC    and Y 
v" p 

The terms in the call list are: 

KK1 -  not used 
K2 - 1 Virlal equation of state is used 

2 Van der Waal equation of state is used 
3 Ideal gas equation of state us used 

71. SUPINF(Y,YAV,MAXY,MINY,K) 

This subroutine determines the maximum MAXY, minimum MINY, 
and average, YAV values of a variable Y in the call list, and 
calculates the average change in Y between adjacent mesh points on 
a given time line. 

The terms in the call list are: 

K - 1 behind bullet 
2 in front of bullet 
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72. TBCOND(L,Kl,K2,K3,K4fXA,XB,UG) 

This subroutine specifies the boundary conditions for the gas 
phase when both phases are present at the boundary. 

The terms in the call list are: 

Kl - 1 left boundary 
2 right  " 

K2 ■ not used 
K3 - "  " 
K4 - 
XA - "  " 
XB - "  " 

73. WQCSG.SP.EG.EP.UCUP.PG.PP.RG.WSTG.TP.ES.XX.DT.TT, 
KlfK2,K3tZZ,Z2,L) 

This subroutine calculates the rate at which gas mass Is 
created per unit volume of mixture during burning,  u. 

The only requirement on the terms in the call list is that 
all variables  used In u be available. 

74. WWGQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT, 
K1,K2,K3,Z1,Z2,L) 

This subroutine calculates the rate of decrease in gas mass 
per unit volume of mixture due to losses through the duct wall, oo . 

w 
The only requirement on the terms In the call list is that 

all variables used In ui be available. 
w 

75. WWPQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT, 
K1,K2,K3,Z1,Z2,L) 

This subroutine calculates the rate of decrease in particle 
mass per unit volume of mixture due to losses through the duct 
wall, ui . 

wp 

The only requirement on the terms in the call list is that 
all variables used In u)  be available. 

wp 

76. XINT(A,B,C,D,E) 

This subroutine performs linear interpolation using the 
formula 

XINT - A + (B-A)E/D. 
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77.  VSWICH(L,K1,K2,K3,KA,K5,K6,KK7,KK8,K9,K10) 

This subroutine controls the switching of properties 
from one location to another. 

The terms in the call list are: 

Kl > first point to be switched 
K2 - last   "  "  " 
K3 - 1 always 

K4,K5 - properties will be switched from line K5 
to line K4. 

KG - 1 K7 and K8 - I (Kl <. I <, K2) 

- 2 K7 and K8 - KK7 and KK8 
K7,K8 - point K8 will be switched to K7 location 

KK7.KK8 - (see K6 - 2) 
K9 - 1 always 

K10 - 0 always 

III.  Description of the options available for a user which re- 
quire subroutines to be altered 

1. Change the equation of state 

a. To change the equation of state the user must put the 
equation of state in the following form: 

P ■ p(p.T) 

and he must develope relations of the form: 

f(E,p,T) - 0 
and 

g(S,ptT) - 0 

b. Subroutines PTQ, QET, NTROPY and FRET must be changed 
in accordance with the inatractions listed In the 
program. 

2. Change the expression for the regression rate 

The user must alter subroutine DZDTQ in accordance 
with instructions in the program. 
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J.   Change the shape of the particles. 

The user raunt change the expressions for the Inlutne of the 
particle VP as a function of regression distance zz and Its 
time derivative In subroutine QGQ and WGQ. 

A.   Change the drag force expression. 

The user must alter subroutine FQ In accordance with 
instructions listed in the program. 

3.   Change the expression for heat transfer with the wall. 

The user must alter subroutine QWGQ for the gas phase and 
QWPQ for the particle phase in accordance with instructions 
listed in the program. 

6. Change the expression for mass transfer with the wall. 

The user must alter subroutine WWGQ for the gas ohast and 
WWPQ for the  particle phase In accordance with ir.s»-iUctions 
listed in the program. 

7. Change the expression for the friction force at the wall. 

The user must alter subroutine FWGQ for the gas phase and 
FWPQ for the particle phase In accordance with instructions 
listed in the program. 

8. Change the expression for the area of the duct as a 
function of x. 

The user must alter subroutines AR and AAX in accordance 
with the instructions listed in the program. 

9. Change the expression for C . 

The user must alter subroutine SPPT by changing the expression 
for CV. 
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IV  Instructions for running the computer code TWOFLO (additional 
information can be found in the sample output. Sec.(6)) 

1.  Before proceeding to discuss the input cards necessary to run 
TWOFLO, lot us first explain the restart option available to the 
user.  This program is designed to allow the user to divide a long 
run up into several shorter ones, or to extend a run that has been 
terminated due to process time limits.  The Important point to 
bo noted is that the data is dumped out by subroutine AOUT and 
read back into the program in identical format in subroutine AIN. 
If one wishes to change to a form of output other than a dump file, 
(le, punch cards, etc.) his only concern need be that all data 
currently being transferred out of the program in the present fern 
be transfered out in the new form.  This data must then be read 
back into the program in entirety. 

The procedure for utilizing the restart capability when 
running TWOFLO is as follows: 

a. Define three disk or tape files. 
b. Set KDUMPN - 1 (data is read In from card deck) for initial 

run and KDUMPN - 2 (data is read In from a file) for subsequent 
restarts. 

c. Set KDUMPT - 2 (data will be dumped on file for all time 
lines evenly divisible by NOUTF). 

d. Set the file codes IFILEI, IFILE1, IFILE2 and IFILE3. 
The data will be read into the program from IFILEI and Immediately 
dumped on IFILE3 for storage.  Subsequent time lines are dumped 
on both IFILE2 and IFILE3 in accordance with NOUTF. 

2.  The following is a detailed description of the data cards 
needed to initiate i  calculation using TWOFLO. 
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VARIABLE 
NAME 

CARD 
No. 

COLUMN 
No. 

FORMAT DESCRIPTION 

KP LOT 

NPLOTS 

NPLOTP 

1 1-4 

5-8 

9-12 

14 

14 

14 

- 0  (no plots will be made) 
■  1   (plots  of prescribed 

variables vs.   position 
will be  made, 
no.  of  variables  to be 
plotted.     It  is possible 
to plot  up to six variables 
vs.   position. 
Every  time  line divisible 
by NPLOTP will be plotted. 

If  KPLO T - 0 omit  cards no.   2,3 and 4 

IPLOT6 2 1-4 14 - 0   (No plotting) 
- 1  (plots will be made) 

IVARPL(I) 

1-1,NPLOTS 

3 1-4 
5-8 
9-12 
etc. 

L0I4 Code  indicating which var- 
iables  are to be plotted. 
(See subroutine  INIT for 
variable  codes) 

MULT(T) 

I-l,NPOTS 

4 1-4 

5-8 
9-12 
etc. 

L0I4 Nos.  of plots  of a partic- 
ular variable per graph 

NOADDB 

NOADDA 

NOADDI 

5 1-4 

5-8 

9-12 

14 

14 

14 

■ 0 Program will automatically 
add points behind the 
bullet  if  required. 

-  1 No pts.  will be added be- 
hind the b-llet 

■ 0 Program will automatically 
add points  in  front  of the 
bullet  if  required. 

■ 1 No pts.   will be added in 
front of  the bullet. 

DTMAX before  interface is 
NOADDI times as  large as 
normal 

MAXPT 

MAXPTB 

6 1-4 

5-8 

14 

14 

Maximum no.  of pts.   allowed 
behind the bullet 

Maximum no.  of pts.   allowed 
in front of bullet. 
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VARIABLE CARD COLUMN FORMAT DESCRIPTION 
NAME No. No. 

PTES 7 1-15 E15.8 Limiting value for volume 
fraction of particles, c.  If 
c at any point Is less than 
PTES particle effects are 
ignored. 

NTCAL 8 1-4 14 No. of special times lines 
at which the properties will 
be interpolated for and 
printed out. (up to five 
special times allowable). 

If NTCAL - 0 ^mit card No. 9 

TCAL(I) 9 1-75 5E15.8 The special times at which 
I-1,NTCAL the properties will be 

printed out. 

KDUMPN 10 1 11 - 1 (If KDUMPN - 2 data is to be 
read in from existing disk 
or tape file. See next 
section for explanation of 
input) 

KDUMPT 2 11 - 1 if calculations are not to 
be dumped on a file 

- 2 if calculations are to be 
dumped on existing disk or 
tap*» file. 

IFILEl 3 11 If KDUMPT - 1, the values 

IFILE2 4 11 of IFILEl and IFILE2 are 
meaningless (set equal to 
zero) 
If KDUMPT - 2 calculated 
time lines are dumped on 
disk or tape files nos. 
IFILE2 and IFILE2. 

IFILE3 5 11 If KDUMPN - 1 value of 
IFILE3 is meaningless (set 
equal to zero). 
If KDUMPN - 2 the calcula- 
tions read in from IFILEl 
are dumped on IFILE3 as an 
auxiliary file 

IFILEl 5 11 If KDUMPN - 2 Initial time 
line is read in from IFILEl. 
If KDUMPN - 1 value of IFILEl 
la meaningless (set equal to 
zero) 
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NOUTF 11 1 11 Any  time line number into 
which NOUTF divides evenly 
will be dumped on  IFILE1 and 
IFILE2. 

NOUTP 2 11 Any  time line into which 
NOUTP divides evenly will be 
printed out. 

I DRAG 12 1 11 ■ 0 The drag force between parti- 
cle and gas phases  is  set 
equal to zero. 

■ 1 Drag force is calculated. 

B-CONSTANTS 13-42 1-60 4E15.8 On the next thirty(30)   cards 
the B-CONSTANTS are read in, 
four(4)  values per card (a 
total of 120 CONSTANTS) 
Card No.   eleven(11) would 
contain B(l,l),   B(l,2), 
B(l,3),  and B(l,4)  card 
twelve B(l,5),   B(l,6),   B(l,7) 
B(l,8)  card No.   26 B(2,l), 
B(2.2)  B(2,3),  B(2,4)   etc. 
(a description of the b 
CONSTANTS appears  at  the end 
of this section). 

PERPGD 43 1-15 E15.8 ■     .50000000E-02 

PERUGD 16-30 E15.8 •     .5000O0O0E-O2 

PERRGD 31-45 E15.8 ■     .50000000E-02 

PERPGA 44 1-15 E15.8 ■     .10000000E-02 

PERUGA 16-30 E15.8 ■     .10000000E-02 

PERRGA 31-45 E15.8 ■     .10000000E-02 

TIME 45 1-15 E15.8 The time of the Initial  time 
line 

NTIME 16-19 14 Time line number of the 
initial time line 

NDELT 20-23 14 No. of time lines  to be 
calculated 

TMAX 24-38 E15.8 Time of last time line cal- 
culated will be less than 
TMAX (This parameter over- 
rides NDELT) 
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DTMIN 46 1-15 E15.8 The tninlmum value for DELTA t 
(time) 

DTMAX 16-30 E15.8 The maximum value for DELTA t 

DTF1X 31-45 E15.8 If calculated value of DT is 
greater  than DTFIX,  DT will 
be set equal to DTFIX without 
adding points 

^lAXIT 47 1-4 14 Maximum number of iterations 

PXTOL 48 1-15 E15.8 If pressure gradient between 
two successive points on time 
line is greater than PXTOL 
and ISMAX > 0, a shock !• 
inserted 

«DISC 49 1-4 14 ■ 0 number of area discontinui- 
ties   (not including gas- 
particle interface)  in the 
problem 

If NDI SC - 0 omit card No.  50 

[DISC(KA) 50 1-4 1014 The point numbers of the 
area discontinuities 

IFRE(l) 51 1-4 14 Point number of breech 

[FRE(2) 5-8 14 Point number of left surface 
of bullet 

[NT(1) 9-12 14 Point number of interface 
between gas and two-phase 
region 

IFRE(3) 13-16 14 Point number of right surface 
of bullet 

IFRE(4) 17-20 14 Point number of muzzle 

TOLSG 52 1-15 E15.8 The following twelve variables 
are the tolerances used in the 
program's  iterating procedure 

TOLEG 16-30 E15.8 e.g.,  TOLSG is the tolerance 
TOLUG 31-45 E15.8 for SG(gas concentration)     ee 
rOLPG 46-60 E15.8 output for further information 
rOLRG 61-75 E15.8 

roLSP 53 1-15 E15.8 
rOLEP 16-30 E15.8 
roiup 31-45 E15.8 
roLPP 46-60 E15.8 
TOLEP 61-75 115.1 
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TOLES 

TOXX 

54 1-15 

16-30 

E15.8 

E15.8 

MEOS(l) 55 1-2 12 

MEOS(2) 3-4 12 

1 A vlrlal equation of state 
Is used in region behind the 
bullet 

2 Van der Waals  equation  of 
state used in  region behind 
the bullet 

3 Noble-Abel equation of state 
is used in region behind the 
bullet 

1,2 or 3    same as ME0S(1) 
except region is  in  front of 
the bullet. 

ISMAX 56 1-4 14 number of shocks initially 
inserted (<2)  

If ISMAX - 0 omit cards No. 57 and 58. 

IS(1> 

ISRIL2(1) 

PGSH(l) 

57 1-4 

5-8 

9-23 

14 

14 

E15.8 

point number where shock 
number 1 is to be inserted. 

1 right traveling shock is 
Inserted 

2 left traveling shock is 
Inserted 

pressure behind the shock 

If ISMAX - 1 omit card No. 58 

IS(2) 

ISR1L2(2) 

PGSH(2) 

LCODE 

-Ö 

59 

1-4 

5-8 

9-23 

1-4 

14 

14 

E15.8 

14 

point number where shock 
number 2 is to be Inserted 
(must be in front of bullet) 

1 right traveling shock -'s 
Inserted. 

2 left traveling shock is 
Inserted 

pressure behind the shock 

Properties of all pts. behinc 
bullet are Initially the 
same. There will be IFRE(2) 
-1 such pts., each separated 
by a DELTA X of DX (calcu- 
lated in subroutine INIT) 
only one set of properties 
behind bullet should be read 
In 
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- 0 Properties of all pts. be- 
hind bullet must be read in 

LCODEB 5-8 14 - 1 Properties of all pts. in 
front of the bullet are 
initially the same.  There 
will be IFRE(4)-IFRE(3)-1 
such pts., each being 
separated by a DELTA X of 
(calculated in INIT) only 
one set of properties in 
front of bullet should be 
read in. 

- 0 Properties of all pts. in 
front of bullet must be 
read in. 

If LC ODE - 1 one set of cards 60-62 should be read in 
l 
1 - 2 IFRE(2) sets of cards 60-62 should be read in 

IK 60 1-4 14 -1 

IJ 5-8 14 Point number of properties 
on initial time line 

XX(1,I) 9-23 E15.8 Distance from IFRE(l) on 
initial time line. 

UG(1,I) 24-38 E15.8 Gas velocity 

RG(l.I) 39-53 Gas density 

PG(l.I) 54-68 E15.8 Gas pressure 

If IJ > INT(1 ) do not read cards 61 and 62 

upd.D 61 1-15 EIS. 8 Particle velocity 

EPd.D 16-30 E15.8 - 0.0 

RPd.D 31-45 E15.8 Particle density 

ES(l.I) 46-60 Volume fraction of particles 

zzd.i) 62 1-15 I E15.3 Regression distance 

If LC ODEB - 1 
- 2 

and IFRE(4) i  IFRE(2) read card 63 
and "  " " "  "   "  "    " IFRE(4)- 

IFRE(2) times 

Same as 
card 60 63 
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NODIM 64 1-4 14 ■ 1 Causes nondimenslonalizatlon 

■ 0 No nondimenslonalization 

3. The  following data cards are  used  to restart TWOFLO 

VARIABLE 
NAME 

CARD 
No. 

COLUMN 
No. 

FORMAT DESCRIPTION 

The following data cards are used to restart the program. 

Cards    1-9   are the same as the initial data 

Card       10  is the same as the initial data except KDUMPN-2 

Cards   11-12  are the same as the initial data 

Cards   13-15  are the same as card 52-54 in the initial data 

T?1AX 16 1-15 E15.8 time of last time line cal- 
culated will be less than 
TMAX (this parameter over- 
rides NDELT). 

NDTNEW 

DTNEW 

NDTMIN 

DTMINW 

NDELT 

NDTFIX 

17 1 

2-16 

17 

18-32 

33-36 

37-40 

11 

E15.8 

11 

E15.8 

14 

14 

■ 1 Value of DELTA T remains the 
same (no change for restart) 

■ 2 Value of DELTA T is set 
equal to DTNEW 

If NDTNEW - 1, value of DTNEV 
is meaningless (set equal to 
zero) 
If NDTNEW - 2, DELTA T is 
set equal to DTNEW 

■ 1 Value of DTMIN (see previous 
section for explanation) 
remains same 

■ 2 DTMIN is set equal to DTMINW 

If NDTMIN - 1, value of 
DTMINW is meaningless (set 
equal to zero) 
If NDTMIN - 2, DTMIN is set 
equal to DTMINW 

The number of tine lines to 
be calculated on this run. 

■ 1 Value of DTFIX remains same. 

■ 2 Value of DTFIX is set equal 
to DTFIXW 
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I1TFIXW 41-55 E15.8 If NDTFIX - 1, value of    \ 
DTFIXW is meaningless (set 
equal to zero)             1 
If NDTFIX - 2, DTFIX is set | 
equal to DTFIXW.           | 

NDTMAX 

DTMAXW 

18 1 

2-16 

11 

E15.8 

h 1, Value of DTMAX remains the 
same.                   ! 

h 2    Value of DTMAX is changed  | 
to DTMAXW                | 

If NDTMAX - 1, value of    | 
DTMAXW is meaningless (set 
equal to zero)            j 
If NDTMAX - 2, DTMAX is set 
equal to DTMAXW          | 

NINT 

INTW 

19 1 

2-4 

11 

13 

- 1, Value of INT(l) remains the 1 
same                   j 

■ 2, Value of INT(2) is set equal 
to INTW                  1 

If NINT - 1, Value of INTW I 
is meaningless (set equal to 
zero)                   i 
If NINT - 2, Value of INT(l) 
is set equal to INTW      | 

NPXTOL 

PXTOLW 

20 1-4 

5-19 

14 

E15.8 

■ 1, Value of PXTOL remains the | 
same 

* 2, Value of PXTOL is set equal 
to PXTOLW (If e is less    j 
than PXTOL particle proper- 
ties are ignored) 

If NPXTOL • 1 value of 
PXTOLW is meaningless (set 
equal to zero)            \ 
If NPXTOL - 2, PXTOL is set 
equal to PXTOLW.          | 

108 



A.  Description of the  8(2,60) array input constants. 

The "B" constants which specify material properties will be 
underlined.  Such properties designated by the 1 location in the 
array (ie. B(l, )) are for the material behind the bullet; while 
those designated by the 2 location are for the material in front 
of the bullet.  Thus it is only necessary to explain the B(l, ) 
portion of the array.  Any constants that are not explnined below 
are currently not defined in the code and can be set equal to 
zero. 

B(l 1) 
B(1.2) 
B(l,3) 
B(l,4) 
B(1.5) 

B(l,6) 

B(1.8) 
B(l.ll) 
B(l,12) 
B(l,13) 
B(1.14) 
B(l 
B(l 
B(l 
B(l 
B(l 
B(l 
B(l 

B(l 
B(l 
B(l 
BO 
B(l 
B(I 
B(l 
B(l 
B(l 
B(l 
B(l 
B(l 

17) 
20) 
21) 

,22) 
23) 
24) 
25) 

26) 
,27) 
28) 
29) 
30) 

,31) 
32) 

,33) 
34) 
35) 
36) 
37) 

B(l 38) 
B(l 
B(l, 
Bd, 
BCl, 

40) 
41) 
42) 
43) 

= p 

,0' 

0' 

h* 

" x 

w 
V 
d' 

'B' 
JBR 

'B' 
CB' 

m 

A1' t2. 
W 
ß . 

Reference density for Equation of State. 
Reference temperature for Equation of State. 
Reference energy for the Equation of State. 
Reference pressure for Equation of State. 
Geometrical parameter used in subroutines QGQ 
and WGQ to describe the particle shape. 
Geometrical parameter used in subroutines QGQ 
and WGQ to describe the particle shape. 
Hold back pressure 
Universal gas constant 
Mass of gas per mole 
Constant in Van der Waal Equation of State 
Constant in Van der Waal Equation of State 
Wall temperature 
Nondimensionalizing density 
Nondimensionalizing distance 
Nondimensionalizing pressure 
Initial x location of the bullet 
Bullet length 

, Barrel length (measured from the beginning of the 
barrel diameter) 
Diameter of the chamber 
x location where chamber diameter ends 
Barrel diameter 
x location of the beginning of the barrel diameter 
Reference dynamic viscosity used to calculate y 
Reference temperature used to calculate v 
Reference pressure used to calculate u 
Constant used to calculate u 
Constant used to calculate p 
Particle velocity ratio across area discontinuity 
Reference temperature used in entropy equation 
Constant in equation for C 
Constant In equation for C 
Specific Internal energy of combustion products 
Heat released per unit volume of propellant burnt 
Constant in regression formula 
Constant In regression formula 
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B(l,48) 
B(l,49) 
B(l,50) 
B(1.51) 
B(l,52) 

B(1.53) 

F ,  Bore resistance force 
A , Cross-sectional area of the bullet 
M ,  Bullet mass 
p , Muzzle pressure 
t  , The time that it takes for P|i.XTT to reach p 

after the shook leaves the barre] 
t  , The time that it takes for p 

after the bullet leaves the b 

il 
to reach p 

el M 

5. Description of user specified functions and variables currently in TWOFLO. 

a. Drag Force (spherical particle) 

F-- CD p • |u-u | • (u-u )/B(l,5) 
P       P 

where 

CD . |4 + 4.RE
(-1/3) 

RE 

RE - 2-p-B(l,5)-|u-u |/u 

li - B(l,30) + [T-B(l,31)]-8(1,33) + [p-B(l ,32)]-8(1,34) 

b. Constant volume specific heat C 

C - Ba,37) + B(L,38)-T   (L-1,2) 

c. Equation of State (Ideal gas) 

p - B(L,ll)-p-T/B(L,12)    (L-l,2) 

d. Volume of a particle (pancake) 

V - ir.[B(l,5)-z]2-{B(l,6)+4-[B(l,5)-Z]/3} 

e. variou8 parameters in Eq.   (3) 

♦    ■    Fu /o 
P 

u   •    u w 
v   •    0 

V 
E    -    E 

w 
P    "    P •w 

no 



Samp 11' initial data 

The sample input data presenced here corivspondes to computer 
runs A,B and C presented in the Results and Conclusions section of 
the main report. 

CARD  I 

CARD 

CARD 

CARD 

CARD 

KPLOT 
NPLOTS 
NPLOTP 

Not used 

Not used 

Not used 

NOADDB 
NOADDA 
NOADDI 

- 0 
* 0 
- 0 

(omit this card) 

(omit this card) 

(omit this card) 

= 0 
- 1 
= 3 

CARD 6 MAXPT 
MAXPTB 

CARD  7 PTEi 

CARD 8 NTCAL 

CARD 9 TCAL(l) 
TCAL(2) 
TCAL(3) 
TCAL(A) 

CARD 10 KDUMPN 
KDUMPT 
IFILE1 
IFILE2 
IFILS3 
IFILEI 

CARD II NOUTF 
NOUTP 

CARD 12 IDRAG 

CARD 13 

CARD U 

BCl.l) 
B(l,2) 
B(l,3) 
B(l,4) 

B(I,5) 
B(l,6) 
B(1.7) 
B(l,8) 

30 
Not used (an arbitrary value of 0 is read in) 

0.10000000E-02 

0.20000000E-03 s 
0.40000000E-03 s 
0.60000000E-03 s 
0.80000000E-03 s 

1 
2 
1 
2 
1 
1 

1 
1 

1 

0.I2800Ü00E+01 kg/m3 

Not used (an arbitrary value of 0.0 K is retid in) 
Not used (an arbitrary value of 0.0 J/kg Is read in) 
Not used (an arbitrary value of 0.0 Pa Is read in) 

0.27305000E-03 m (Runs A & C) 0.13650000E-03 m (Run C) 
0.381OOOOOE-O3 m (Runs A & C) 0.1905000a£-03 m (Run C) 

Not defined** 
0.20700000E+08 Pa 

The term Not used Indicates that the variable Is defined but not used 
for this specific run. 

**The term Not defined Indicates that the term Is never used in the program. 
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CARD 15 B(l,9) 
B(l,10) 
Bd.ll)   « 
B(l,12) 

CARD 16 B(1.13)   = 

CARD 17 

B(l,14)   - 
B(l,15)   = 
B(l,16) 

B(1,17)  - 
B(l,18) 
B(l,19) 
B(l,20) 

1 
CARD 

1 

18 B(l,21) 
B(l,22)  - 
B(l,23)  - 
B(l,24) 

CARD 19 B(l,25) 
B(l,26) 
B(l,27)  - 
B(l,28) 

CARD 20 B(l,29) 
B(l,30) 
B(l,31)   - 
B(l,32) 

CARD 21 B(l,33) 
B(l,34)  - 
B(l,35)   - 
B(l,36) 

CARD 
1 

22 B(l,37)  - 
B(l,38) 
B(l,39) 
B(l,40) 

CARD 
■ 

23 B(1.41)  - 
B(l,42) 
B(l,43)  - 
B(l,44)  - 

CARD 24 B(1.45)  - 
B(l,46) 
B(l,47)  - 
B(l,48) 

Not defined « 0.00000000E+OO 
Not defined ■ 0.000000OOE+OO 
0.83140000E+01 J/(K-inol) 
0.25547800E-01 kg/mol 

Not used (an arbitrary value of 0.0 N'm /kg2 Is 
read In) 
Not used (an arbitrary value of 0.0 mVkg is read In) 
Not defined - 0.00000OOOE+OO 
Not defined - 0.000000OOE+OO 

O.0OO000OOE+O0 K 
Not defined - 0.000000OOE+OO 
Not defined - 0.OO0000OOE+OO 
0.15000000E-K)3 kg/m3 

0.40000000E-OI m 
0.20000000E+09 Pa 
0.33100000E-01 m 
0.15000000E-01 m 

0.47000000E+00 m 
0.90750000E-02 m 
0.26850000E-01 m 
0.56500000E-02 m 

0.31000000E-01 m 
0.18192000E-04 N-a/mZ 
0.29300000E+03 K 
0.10130000E+06 Pa 

0.53600000E-07 N-8/(m2.K) 
0.I2080000E-I2 s 
Not defined - 0.000000O0E+OO 
0.2980000OE+O3 K 

0.13559000E+04 J/(kg.K) 
0.00000000E+00 J/(kg.K2) 

Not defined - 0.00000000E+00 
0.00000000E+00 J/kg 

0.63000000E+10 J/m3 

0.12000000E-07 m/(Paß-8)  (ß-B(l,43)) 
0.84550000E+00 
Not defined - 0.0O0000OOE+OO 

Not defined - 0.000000OOE+OO 
Not defined - O.OOOOOOOOE+OO 
Not defined - O.OOOOOOOOE+OO 
0.16700000E+03 N 
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CARD  25 V.MIM/ .-   ' 
B(l .50) 
B(l ,51) 
B(l .52) 

CARD 26 B(l .53) 
B(l ,5^) 
B(l .55) 
B(l 56) 

CARD 27 B(l ,57) 

CARD 28 B(2 1) 
B(2 .2) 

• 
B(2 3) 
B(2 .4) 

CARD 29 B(2 5) 

CARD 30 B(2 9) 
B(2 10) 
3(2 11) 
B(2 ,12) 

CARD 31 3(2 13) 

B(2 14) 
3(2 15) 
3(2 16) 

CARD 32 3(2 17) 

CARD 33 3(2 21) 

CARD 34 3(2 25) 

CARD 35 3(2 29) 

CARD 36 3(2 33) 
3(2 34) 
3(2 35) 
3(2 36) 

CARD 37 3(2, 37) 
3(2 38) 
3(2 39) 
3(2 40) 

- O.24279500E-04 m 
=  O.16290O00E-02 kg 
- 0.10132500E-K)6 Pa 
- 0.20000000E-04 s 

= O.50000000E-04 s 
» Not defined - 0.0OOO0000E+0O 
» Not defined . 0.00OOO000E+0O 
- Not defined - 0.O0OO0000E+OO 

- 3(1,60) - Not defined- 0.O00OOO00E+00 

• Not used (an arbitrary value of 0.0 kg/m^ Is read In) 
• Not used (an arblrtary value of 0.0 K Is read In) 
■ Not used (an arbitrary value of 0.0 J/kg Is read In) 
■ Not used (an arbitrary value of 0.0 Pa Isread In) 

- 3(2,8) - Not defined- 0.0OO00OOOE+00 

• Not defined - 0.OO0OO00OE+O0 
• Not defined - 0.00000000E+00 
■ Not used (an arbitrary value of 0.0 J/(K'mol) is read in) 
■ Not used (an arbitrary value of 0.0 kg/mol Is read in) 

■ Not used (an arblrtary value of 0.0 N-m6/kg2 is 
read in) 

= Not used (an arbitrary value of 0.0 mVkg Isread in) 
- Not defined - 0.OOOOO000E+OO 
- Not defined - 0.00000000E+OO 

- 3(2,20) - Not defined - 0.000OOO00E+00 

- 3(2,24) - Not defined - 0.000OOO00E+00 

- 3(2,28) - Not defined - 0.000OOO00E+00 

- 3(2,32) - Not defined ■ 0.000OOO00E+00 

-Not defined - 0.OOOOO000E+OO 
-Not defined - 0.00000000E+00 
- Not defined - 0.OOOOOOOOE+OO 
- Not used (an arblrtary value of 0.0 K Is read in) 

Not used (an arbitrary value of 0.0 J/(kg.K) is read in) 
Not used (an arbitrary value of 0.0 J/(kg'K2) is read in) 
Not defined - 0.O000O000E+OO 
Not defined - 0.OO0OOO0OE+OO 

113 



CARD 38 B(2,41) 

CARD 39 B(2,45) 

CARD AO B(2,49) 

CARD 41 3(2,53) 

CARD 42 B(2,57) 

CARD 43 PERPGD 
PERUGD 
PERRGD 

CARD 44 PERPGA 
PERUGA 
PERRGA 

CARD 45  TIME 
NTIME 
NDELT 
TMAX 

CARD 46  DTMIN 
DTMAX 

DTFIX 

CARD 47 MAXIT 

CARD 48 PXTOL 

CARD 49  ND1SC 

B(2,44) = Not defined - 0.000O00OOE+00 

B(2,48) - Not defined - 0.000000OOE+O0 

B(2,52) - Not defined - 0.000O000OE+O0 

B(2,56) «Not defined - 0.0000O0OOE-K)O 

B(2,f)0) - Not defined - 0.000000O0E+00 

0.5OO00000E-02 
0.5OO0O000E-02 
O.5OOOO000E-02 

0.10000000E-01 
0.10000000E-01 
O.IOOOO00OE-O1 

0.OOOO0000E+O0 a 
0 

40 
0.12OOO00OE-02 s 

0.45000000E-05 s 
Not used (a value less than 2.2 x DTMIN should 
be read in) - 0.OOOO00O0E+00 s 
Not used ( a value much larger than DTMIN should 
be read in) - 0.10000000E+10 s 

15 

0.50000000E+01  Pa/m 

0   (Program is currently not operational for 
NDISC greater than 0) 

CARD 50    Not used    (omit  this card) 

CARD 51 IFRE(l) 1 
IFRE(2) 6 
INT(l) 6 
IFRE(3) 6 
IFRE(4) 6 

CARD 52 TOLSG 0 10000000E-02 
TOLEG 0 I0OO0000E-02 
TOLUG 0 10000000E-02 
TOLPG 0 10000000E-02 
TOLRG 0 10000000E-02 
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CARP r)3 TOLSP 
TOLEP 

TOLUP 
TOLPP 

TOLRP 

CARD 54 TOLES 
TOLXX 

CARD 55 MEOS(l) 
MEOS(2) 

CARD 56  ISMAX 

CARD 57 Not used 

CARD 58 Not used 

CARD 5 9 LCODE 
LCODEB 

CARD 60 IK 
IJ 
XXO.l) 
UG(1,1) 
RG(1,1) 

PG(1,1) 

CARD 61 UP(1,1) 
EPd.l) 

RPd.D 
ESd.l) 

CARD 62 ZZ(1,1) 

CARD 63 Not used 

CARD 64 NODIM 

- n.l000OO00E-02 
* Not used (an arbitrary value of 0.10000000E-02 

Is read In) 
- 0.10000000E-02 
■ Not used (an arbitrary value of 0.10000000E-02 

Is read In) 
• Not used (an arbitrary valur of 0.10000000E-02 

is read In) 

- ().10000000E-02 
= 0.10000000E-02 

= Not used (an arbitrary value of 3 Is read In) 

0 

(omit this card) 

(omit this card) 

1 
■ Not used (an arbitrary value of 1 is read In) 

1 
1 

- O.0000OOOOE+00 m 
- 0.00000000E+00 m/s 
- 0.10755000E+00 kg/m3 (Runs A & B) 
- 0.14637200E+02 kg/m3 (Run C) 
- 0.10132500E+06 Pa (Runs A & B) 
- 0.13790000E+08 Pa (Run C) 

- O.0000OOOOE+OO m/s 
- Not used (an arbitrary value of 0.00000000E+00 J/kg 

is read in) 
- 0.16050000E-K)4 kg/m3 

- 0.5750OOOOE+OG 

- 0.00000000E+00 m 

(omit this card) 

- 0 
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TOLPP 

TOLRP 

CARD 15  TOLES 
TOLXX 

CARD 16 TMAX 

CARD 17 NDTNEW 
DTNEW 

NDTMIN 

DTMINW 

NDELT 
NDTFIX 
DTFIXW 

CARD 18 NDTMAX 
DTMAXW 

CARD 19 NINT 
INTW 

CARD 20 NPXTOL 
PXTOLW 

Not used (an arbitrary value of 0.10000000E-02 
is read In) 
Not used (an arbitrary value of 0.10000000E-02 
Is rerd In) 

0.10000000E-02 
0.10000000E-02 

0.12000000E-02 s 

1 
Not used (an arbitrary value of 0.00000000E+00 s 
is read In) 

1 
Not used (an arbitrary value of 0.000O00O0E+O0 s 
Is read In) 

5 
1 

Not used (an arbitrary value of O.OOOOOOOOE+00 s 
is read In) 

1 
Not used (an arbitrary value of 0.00000000E+00 s 
Is read In) 

1 
Not used (an arbitrary value of 0 is read in) 

1 
Not used (an arbitrary value of 0.GOOOOGOOE+OO Pa 
Is read In) 

116 



/.  Sample restart data 

CARD 1 KPI.OT s 0 
NPLOTS = 0 
NPLOTP x 0 

CARD 2 Not used 

CARD 3 Not used 

CARD 4 Not used 

CARD 5 NOADDB 
NOADDA 
NOADDI 

CARD 6 MAXPT 
MAXPTB 

CARD 7 PTES 

CARD 8 NTCAL 

CARD 9 TCAL(l) 
TCAL(2) 
TCAL(3) 
TCAL(4) 

CARD 10 KDUMPN 
KDUMPT 
IFILE1 
IFILE2 
IFILE3 
IFILEI 

CARD 11 NOUTF 
NOUTP 

CARD 12  IDRAC 

CARD 13 TOLSG 
TOLEG 
TOLUG 
TOLPG 
TOLRG 

CARD 14 TOLSP 
TOLEP 

TOLUP 

(omit this card) 

(omit this card) 

(omit this card) 

0 
1 
3 

- 30 
- Not used (an arbitrary value of 0 is read in) 

- 0.10000000E-02 

4 

0.20000000E-03 s 
0.40000000E-03 s 
O.60000000E-03 s 
0.80000000E-03 s 

2 
2 

1 
1 

1 

0.10000000E-02 
0.10000000E-02 
0.10000000E-02 
0.10000000E-02 
0.10000000E-02 

0.10000000E-02 
Not used (an arbitrary value of 0.10000000E-02 
is read in) 
0.10000000E-02 
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